A short introduction to secrecy and verifiability for elections

Elizabeth A. Quaglia¹ and Ben Smyth²

¹Information Security Group, Royal Holloway, University of London, UK
²Interdisciplinary Centre for Security, Reliability and Trust, University of Luxembourg, Luxembourg

September 19, 2018

Many election schemes rely on art, rather than science, to ensure that choices are made freely and with equal influence. Such schemes build upon creativity and skill, rather than scientific foundations. These schemes are typically broken in ways that compromise free choice, e.g., [12, 7, 40, 41, 36], or permit adversaries to unduly influence the outcome, e.g., [15, 11, 7, 37]. This article shows how such breaks can be avoided by carefully formulating security definitions, and proving that schemes satisfy these definitions. Equipped with these definitions, we can build election schemes that can be proven to behave as expected.

An election scheme is a decision-making mechanism to choose a representative [21, 27, 13, 3], typically consisting of at least the following three steps. First, an administrator initialises the scheme (setup). Secondly, each voter constructs and casts a ballot for their choice (voting). These ballots are authenticated and recorded using a mechanism, e.g., a bulletin board. Thirdly, the administrator tallies the recorded ballots and announces an outcome, i.e., a frequency distribution of choices (tallying). This distribution is used to select a representative. For example, in first-past-the-post election schemes the representative corresponds to the choice with highest frequency.

Choices must be made freely, which can be achieved by making choices in private [38, 25, 24], i.e., “when numerous social constraints in which citizens are routinely and universally enmeshed – community of religious allegiances, the patronage of big men, employers or notables, parties, ‘political machines’ – are kept at bay” [6]. This has led to the emergence of the following requirement.

• Ballot secrecy: a voter’s choice is not revealed to anyone.

Ballot secrecy ensures that a voter’s choice is kept secret, which is intended to prevent unwanted consequences (including the preclusion of free choice) that might otherwise arise.

To illustrate how ballot secrecy can be achieved, we introduce a simple election scheme that instructs voters to encrypt their choices and instructs administrators to decrypt encrypted choices to obtain the outcome. More specifically, the scheme works as follows: first, the administrator generates a public key. Secondly, each voter encrypts their choice using that key. Finally, the administrator decrypts each encrypted choice and outputs the corresponding outcome. Intuitively, ballot secrecy is achieved if the underlying encryption scheme is secure, i.e., the encryption of a choice leaks no information about that choice.

Voters, and any other interested parties, must be able to convince themselves that the announced outcome is indeed the distribution of choices made by voters, which can be achieved by making elections verifiable, i.e., ensuring “there [is] enough evidence for anyone who doubts the results to re-examine and rationally determine whether the [outcome was] called correctly” [39]. Election verifiability can be captured by the following requirements.
Rediscovering verifiability: A historic perspective on election scheme evolution

Making choices in private has not always been the way. “Americans used to vote with their voices – *viva voce* – or with their hands or with their feet. Yea or nay. Raise your hand. All in favor of Jones, stand on this side of the town common; if you support Smith, line up over there” [20]. Voting in public naturally enables election verifiability, since each voter can compute the outcome themselves. But, Mill [23] eloquently argues that choices cannot be expressed freely in public: “The unfortunate voter is in the power of some opulent man; the opulent man informs him how he must vote. Conscience, virtue, moral obligation, religion, all cry to him, that he ought to consult his own judgement, and faithfully follow its dictates. The consequences of pleasing, or offending the opulent man, stare him in the face; ... the moral obligation is disregarded, a faithless, a prostitute, a pernicious vote is given.” To ensure social constraints are kept at bay, voting became a private act. In particular, a voter typically marks their choice on a ballot paper in the isolation of a polling booth and deposits their marked paper into a locked ballot box. The isolation of the polling booth is intended to facilitate free choice at the time of marking. Moreover, privacy is preserved during tallying by mixing the ballot papers prior to counting. And “this idea has become the current *doxa* of democracy-builders worldwide” [6]. But, unlike raising hands, voters cannot be assured that ballots are counted correctly. Nonetheless, the transparency of the whole election process from ballot casting to tallying and the impossibility of altering the markings on a paper ballot sealed inside a locked ballot box gives an assurance of correctness. Transparency is lost in electronic election schemes, because software and hardware are used to construct ballots and transmit them over public communication channels, and it is difficult to observe electronic operations performed on bitstrings. Consequently, choices might be altered in ways that cannot be detected. This led to the rediscovery of verifiability, which has become an essential requirement [39].

- **Individual verifiability**: voters can check that the ballots they constructed are recorded.
- **Universal verifiability**: anyone can check that the announced outcome is the distribution of voters’ choices expressed in the recorded ballots.

Taken together, these properties intuitively ensure that anyone can convince themselves that the announced outcome corresponds to the choices expressed in the recorded ballots, and voters can convince themselves that their ballot is included amongst the ballots recorded, hence, their choice is included in the outcome announced by the administrator. Election verifiability requires election schemes to provide an additional (*verification*) step to perform the necessary checks.

Verifiability is not ensured by our election scheme based upon encryption. Indeed, a spuriously announced outcome need not even correspond to the encrypted choices! We introduce a simple election scheme that achieves verifiability. The scheme instructs each voter to pair their choice with a random value (i.e., a nonce) and instructs the administrator to compute the election outcome from those pairs. This scheme ensures verifiability, because voters can use their nonce to check that their ballot is recorded (individual verifiability) and anyone can recompute the election outcome to check that it corresponds to votes expressed in recorded ballots (universal verifiability). But, ballot secrecy is not ensured, because all votes are revealed. To simultaneously satisfy both secrecy and verifiability, more advanced schemes are required.

A rich selection of election schemes have been proposed in the research literature. One of the most prominent schemes is *Helios* [2], an open-source, web-based election system. The notoriety of Helios is partly due to its elegant construction and use in binding elections. For instance, by the ACM, the International Association of Cryptologic Research, the Catholic University of Louvain, and Princeton University. The scheme works as follows: first, an administrator generates a public key and a proof of correct key construction (setup). Secondly, each voter encrypts their choice with the public key, proves correct ciphertext construction, and casts the ciphertext coupled with the proof as their ballot (voting). Thirdly, the administrator collects the ballots cast, discards any ballot for which proofs do not hold, homomorphically combines the ciphertexts in the remaining ballots to derive the encrypted outcome, decrypts, proves correctness of decryption, and announces the outcome and proof (tallying). Finally, any interested party recomputes the aforementioned...
combination and verifies all proofs, and voters verify that the ballots they constructed are amongst those collected (verification). Helios was first implemented as Helios 2.0. It is intended to satisfy ballot secrecy due to encryption, and election verifiability because encryption and decryption steps are accompanied by proofs.

One way to evaluate security of a scheme is to formulate the desired security properties and check whether the scheme satisfies them. Cryptographers formulate security properties using games [17]. Typically, a game consists of a series of interactions between a benign challenger and a malicious adversary. An adversary wins a game if it successfully completes a challenge set by the challenger (e.g., distinguish between two scenarios). Winning captures an execution of the scheme in which the desired security property does not hold. Thus, when formulating a game, the challenge captures what the adversary should not be able to achieve. Formulating such games is at the core of modern cryptography. Equipped with a game that captures some security property, we can formally prove whether a scheme achieves that property.

The remainder of this article will explore fundamental security properties for elections, namely, ballot secrecy and verifiability. The definitions we consider are suitable for a large class of election systems. And we demonstrate their applicability by reviewing security of Helios.

Ballot secrecy

Ballot secrecy could be formulated as game G, which proceeds as follows: the adversary A picks choices v_0 and v_1; the challenger C constructs a ballot for one of these choices, that is, the challenger selects a bit β uniformly at random and constructs a ballot, denoted $b(v_\beta)$, for choice v_β; and the adversary must determine which choice the ballot is for, that is, the adversary must determine γ such that $\gamma = \beta$. If the adversary wins, then a voter’s choice can be revealed, otherwise, it cannot, i.e., the election scheme provides ballot secrecy. Helios 2.0 satisfies this notion of security, because choices are protected by encryption.

Game G is too weak, because election schemes announce election outcomes and such information can be used to reveal voters’ choices. Thus, it is necessary to extend the game to include some tallying capability which permits the adversary to learn the outcome. We derive game G' as a strengthening of game G, whereby the challenger additionally tallies the ballot it constructed and gives the resulting outcome to the adversary. (That is a strengthening, because there are more ways to win game G', indeed, any adversary that wins against G can also win against G', moreover, an adversary against G' can exploit additional information – namely, the outcome – to win.) However, such an outcome includes only the choice used by the challenger to construct the ballot, from which the adversary can trivially determine what choice the ballot is for. Thus, the game is unsatisfiable. This is inevitable, because there are some scenarios in which outcomes reveal choices (most notably, when all voters make the same choice), as well as scenarios in which outcomes, coupled with partial knowledge on the distribution of voters’ choices, allow voters’ choices to be deduced. For example, suppose Alice, Bob and Mallory participate in a referendum, and the
outcome has frequency two for yes and one for no. Mallory and Alice can deduce Bob’s choice by pooling knowledge of their own choices. Similarly, Mallory and Bob can deduce Alice’s vote. Furthermore, Mallory can deduce that Alice and Bob both voted yes, if she voted no. For simplicity, our informal definition of ballot secrecy deliberately omitted side-conditions which exclude these inevitable revelations. We refine our definition as follows.

A voter’s choice is not revealed to anyone, except when the choice can be deduced from the outcome and any partial knowledge on the distribution of choices.

This refinement ensures the aforementioned examples are not violations of ballot secrecy. By comparison, if Mallory’s choice is yes and she can deduce the choice of Alice, without knowledge of Bob’s choice, then ballot secrecy is violated.

We can weaken game G', in accordance with the refined definition of ballot secrecy, so that the adversary does not win by exploiting inevitable revelations (i.e., the adversary loses when the choice can be deduced from the outcome and any partial knowledge on the distribution of choices). However, in such a game, the outcome includes only the choice used by the challenger to construct the ballot, from which the adversary can trivially determine what choice the ballot is for. Yet, the refined definition excludes the adversary’s success in this case, since the choice is deduced from the outcome. Thus, the adversary can never win. We need a new approach.

We introduce game H, which proceeds as follows. The game is initialised by the challenger picking a bit β uniformly at random. The adversary picks choices v_0 and v_1, the challenger constructs a ballot for v_β, and gives the ballot to the adversary. The challenger then constructs a ballot for $v_{1-\beta}$ and gives that ballot to the adversary too. Thus, the challenger constructs ballots for v_0 then v_1, or vice-versa. The challenger tallies the two ballots and gives the resulting outcome to the adversary. (For simplicity, we represent outcomes as multisets of choices.) The adversary must determine if $\beta = 0$ or $\beta = 1$. This game is satisfied by Helios 2.0, because tallying ballots for v_0 and v_1, or ballots for v_1 and v_0, results in an outcome with frequency one for each of choices v_0 and v_1, since the operator to combine encrypted choices is commutative.

Game H strengthens game G to include a tallying capability, whilst avoiding the problems associated with game G'. However, game H is also too weak, because it does not consider that voters might be malicious or influenced by an adversary. Thus, some attacks cannot be detected. Indeed, Helios 2.0 is vulnerable to the following attack: an adversary observes a voter casting their ballot, casts a copy of that ballot as their own, and deduces the voter’s choice from the election outcome [10]. For example, in an election with voters Alice, Bob, and Mallory, if Mallory casts a copy of Bob’s ballot, then she can deduce Bob’s choice as the choice in the outcome with frequency two or greater.

To detect the attack against Helios 2.0, we extend game H to (optionally) include the adversary picking a ballot and the challenger tallying that ballot along with the two ballots constructed by the challenger. We call this game BS. Helios 2.0 is not secure with respect to this game, because it detects the aforementioned attack, whereby Mallory casts a copy of Bob’s ballot. This attack can be attributed to tallying meaningfully related ballots, and omitting such ballots from tallying (i.e.,
The voter selects a choice v from a list of choices $1, \ldots, \ell$ and computes ciphertexts $\text{Enc}(pk, m_1), \ldots, \text{Enc}(pk, m_{\ell-1})$ such that if $v < \ell$, then plaintext m_v is 1 and the remaining plaintexts $m_1, \ldots, m_{v-1}, m_{v+1}, \ldots, m_{\ell-1}$ are 0, otherwise, all plaintexts are 0. The voter also computes proofs $\sigma_1, \ldots, \sigma_\ell$ so that this can be verified: proof σ_1 demonstrates $\text{Enc}(pk, m_1)$ is a ciphertext on plaintext 0 or 1, and similarly for proofs $\sigma_2, \ldots, \sigma_{\ell-1}$, and proof σ_ℓ demonstrates that the homomorphic combination of ciphertexts $\text{Enc}(pk, m_1), \ldots, \text{Enc}(pk, m_{\ell-1})$ contains 0 or 1.

The voter outputs the ciphertexts and proofs as their ballot. Hence, the ballot is for exactly one choice, and this can be verified by checking proofs.

The administrator collects ballots for which the encapsulated proofs all hold, forms a matrix of the encapsulated ciphertexts, i.e.,

$$
\begin{array}{c}
\text{Enc}(pk, m_{1,1}) & \ldots & \text{Enc}(pk, m_{1,\ell-1}) \\
\vdots & & \vdots \\
\text{Enc}(pk, m_{k,1}) & \ldots & \text{Enc}(pk, m_{k,\ell-1})
\end{array}
$$

homomorphically combines the ciphertexts in each column to derive the encrypted outcome, i.e.,

$$
\text{Enc}(pk, \Sigma_{i=1}^{k} m_{i,1}) & \ldots & \text{Enc}(pk, \Sigma_{i=1}^{k} m_{i,\ell-1}),
$$

decrypts the homomorphic combinations to reveal the frequency of choices $1, \ldots, \ell - 1$, i.e.,

$$
\Sigma_{i=1}^{k} m_{i,1} & \ldots & \Sigma_{i=1}^{k} m_{i,\ell-1},
$$

computes the frequency of choice ℓ by subtracting the frequency of any other choice from the number of collected ballots, i.e., $k - \Sigma_{j=1}^{\ell-1} \Sigma_{i=1}^{k} m_{i,j}$, and announces the outcome as those frequencies, along with a proof demonstrating correctness of decryption.

Ballot secrecy can be formulated as a game that eliminates the undesirable assumption that all cast ballots are recorded and tallied, and considers the adversary casting arbitrarily many ballots. This corresponds to recording all cast ballots, which introduces a trust assumption on both the mechanism used to record ballots and the communication channels used to cast ballots. Attacks that arise when this trust assumption is not upheld cannot be detected. For example, attacks that require cast ballots to be excluded from tallying are not detected. Indeed, without such an assumption, Helios’12 is vulnerable to an attack: Mallory observes Alice’s ballot, derives a related ballot, excludes Alice’s ballot from tallying, and exploits a relationship that arises between Alice’s choice and the election outcome to deduce Alice’s choice. This attack is similar to the attack against Helios 2.0, which involved tallying meaningfully related ballots. The difference here is that a related ballot is derived and the original ballot is discarded, yet the relationship between Alice’s choice and the outcome remains, which permits the attack. In this instance, ballot weeding is not possible, because the original ballot is discarded. Nevertheless, the attack can be prevented by eliminating the possibility to construct related ballots.

Ballot secrecy cannot be formulated as a game that eliminates the undesirable assumption that all cast ballots are recorded and tallied, and considers the adversary casting arbitrarily many ballots. The game is more complex than the games we have considered, since it must introduce non-trivial side conditions to ensure the adversary does not win by exploiting inevitable revelations, and we refer the reader to [30] for details. Using this game, attacks against Helios’12 can be detected [30]. Nonetheless, a variant of Helios [34], henceforth Helios’16, that uses ballots from which meaningfully related ballots cannot be constructed (i.e., non-malleable ballots) [30, 35], is not vulnerable to such attacks and is proven to satisfy this formulation of ballot secrecy.

We have introduced a variant of Helios that satisfies ballot secrecy, but ballot secrecy does not
Practicality: Defining security properties is challenging, are efforts well-placed?

By exploring various formulations of ballot secrecy, we have seen how challenging defining a security property can be. Indeed, researchers toil away to get the subtle details of definitions right. Their efforts are well-placed, since these definitions enable the design of new, provably secure schemes, as well as the discovery of vulnerabilities in existing schemes. The evolution of Helios showcases the value of such work. Indeed, vulnerabilities were discovered against Helios 2.0 and Helios’12, and Helios’16 was developed to overcome these vulnerabilities. But, are these efforts sufficient?

A formal security definition essentially captures a model of possible interactions between some scheme and an adversary, and a scheme can be proven to satisfy the security definition if no adversary can break security within the context of the model. It follows that no adversary can break security of the deployed scheme, as far as the model captures interactions between the deployed scheme and any adversary. Hence, a model that underestimates adversarial capabilities may miss attacks and a model that overestimates adversarial capabilities may report false attacks. For instance, game BS does not capture attacks by adversaries that control the mechanism used to record ballots or the communication channel used to cast ballots, consequently it misses attacks.

ensure free choice when adversaries are able to communicate with voters nor when voters deviate from the prescribed voting procedure to follow instructions provided by adversaries. Indeed, Helios does not prevent a voter from showing an adversary how they computed their ballot to reveal their choice. In the presence of such adversaries, election schemes must satisfy stronger notions of free choice, such as receipt-freeness and coercion resistance.

Election verifiability

To satisfy individual verifiability, each voter must be able to check that their ballot has been recorded. Thus, the recorded ballots must be publicly accessible. In this setting, it suffices to enable voters to uniquely identify their ballot amongst the recorded ballots. This property can be formulated as game IV, which proceeds as follows: the adversary provides any inputs necessary to construct a ballot, including a choice \(v_0 \); the challenger constructs a ballot using those inputs; and the adversary and challenger repeat the process to construct a second ballot for choice \(v_1 \). The adversary wins if the two independently constructed ballots are equal. Winning signifies the existence of scenarios in which voters cannot uniquely identify their ballot, thus voters cannot be convinced that their ballot is recorded. To achieve individual verifiability, ballots must be constructed in a non-deterministic manner. This can be achieved by including an encrypted choice in the ballot. Indeed, Helios 2.0, Helios’12 and Helios’16 all achieve individual verifiability in this way [34].

To satisfy universal verifiability, anyone must be able to check that the announced outcome corresponds to the choices expressed in the recorded ballots. An election scheme’s verification step is intended to perform such checks, hence, it suffices to consider this step when formulating the security property. Thus, universal verifiability can be formulated as game UV, which proceeds as follows: the adversary provides inputs necessary for verification, including outcome \(v \) and recorded ballots \(b(v_1), \ldots, b(v_n) \), and it wins if the outcome does not correspond to the choices expressed by those recorded ballots, yet verification succeeds, i.e., \(c(v, b(v_1), \ldots, b(v_n)) = \top \). At first glance, Helios 2.0 appears to satisfy universal verifiability. Indeed, proofs of correct computation are produced in the setup, voting and tallying steps, and these proofs are checked during verification. Moreover, an abstract model of Helios 2.0 is proven
Trust administrators for secrecy, but not verifiability

We consider election schemes in which the administrator tallies ballots. And definitions of ballot secrecy implicitly assume that the administrator tallies the recorded ballots and nothing more. Thus, ballot secrecy can only be assured when the administrator is honest. Indeed, if the administrator is dishonest, then each recorded ballot can be tallied individually to reveal voters’ choices. This trust assumption can be weakened by distributing the administrator’s role. Moreover, it can be eliminated in decentralised election schemes, such as [29, 14, 18], for example. Unlike ballot secrecy, individual and universal verifiability do not make any trust assumptions about the administrator.

to satisfy a notion of universal verifiability [19]. However, the mechanism to construct proofs in Helios 2.0 is unsuitable and this gives way to vulnerabilities that enable the administrator to inject an arbitrary number of choices in the outcome [5, 8]. (The abstract model did not consider the details of the mechanism used to construct proofs, hence, the attack could not be detected in that model.) Helios’12 is intended to mitigate against this attack. In particular, the mechanism to construct proofs is modified. But, Helios’12 is reliant on ballot weeding, which is compatible with ballot secrecy [33], but not with universal verifiability [34]. Indeed, in Helios’12, Mallory can cast a ballot for a choice related to Alice’s choice in a way that only Mallory’s choice is included in the outcome. Yet, verification would accept this outcome, despite Alice’s choice being excluded, hence the announced outcome does not correspond to the choices expressed. This is an undesirable effect of the weeding procedure used by Helios’12. By comparison, Helios’16 uses non-malleable ballots, thereby avoiding the need for ballot weeding. And it is proven to satisfy universal verifiability [34].

Closing remarks

We have explored the fundamental properties that are necessary to ensure that election schemes behave as expected. The exploration reveals how our understanding of those expectations has evolved, culminating in the emergence of formal, cryptographic definitions of properties necessary to fulfil expectations. We have provided insights into definitions of secrecy and verifiability, allowing us to learn and appreciate the underlying intuition and technical details of these notions.

Equipped with definitions, we can build election schemes that can be proven to behave as expected. And, as an illustrative example, we reviewed Helios’16, which was built and proven secure in this way. The definitions can also be used to analyse existing election schemes, and vulnerabilities have been uncovered. Indeed, we have described a series of vulnerabilities that were discovered during the analysis of Helios 2.0, which advanced our understanding of system behaviour and prompted the design of Helios’16. Moreover, the definitions are applicable beyond Helios. For instance, Smyth, Frink & Clarkson [34] have shown that neither Helios-C (an extension of Helios) [9] nor JCJ (an election scheme achieving coercion resistance) [16] satisfy the definition of universal verifiability, and propose a variant of JCJ that does. Moreover, Smyth has shown that implementations of the mixnet variant of Helios do not satisfy universal verifiability, and proposes a variant that satisfies both universal verifiability [32] and ballot secrecy [30].

We deliberately described cryptography and accompanying security proofs as a panacea that enables the construction of secure election schemes. We must now make a confession. There is more to this story: secure election schemes must be implemented in software, and we must prove that software is implemented as prescribed. In particular, secrecy requires setup, voting and tallying steps be implemented as prescribed; individual verifiability requires the voting step be implemented as prescribed; and universal verifiability requires the verification step be implemented as prescribed. (Indeed, games BS and IV both construct ballots in the prescribed manner, and game UV verifies ballots in the prescribed manner. Thus, any conclusions drawn from security proofs only apply when the relevant steps are followed in the prescribed manner.) Proving correct implementation is a lot more work. And that is still not enough. The issues go beyond technology: “Voting is as much a perception issue as it is a technological issue. It’s not enough for the result to be mathematically accurate; every citizen must also be confident that it is correct” [28].
Variant of Helios with a mixnet

The variant of Helios with a mixnet [1] works as follows: first, as per Helios, an administrator generates a public key pk and a proof of correct key construction. Secondly, each voter selects a choice v, computes ciphertext $\text{Enc}(pk, v)$ and a prove demonstrating the ciphertext is valid, and casts the ciphertext coupled with the proof as their ballot. Thirdly, the administrator collects ballots for which the encapsulated proof holds, inputs the encapsulated ciphertexts to a mixnet, and decrypts the mixed ciphertexts to reveal the choices. That is,

$$
\begin{align*}
\text{Enc}(pk, v_1) & \quad \text{mixing} & \text{Enc}(pk, v_{\pi(1)}) & v_{\pi(1)} \\
\text{Enc}(pk, v_2) & & \text{Enc}(pk, v_{\pi(2)}) & v_{\pi(2)} \\
\vdots & & \vdots & \\
\text{Enc}(pk, v_k) & & \text{Enc}(pk, v_{\pi(k)}) & v_{\pi(k)}
\end{align*}
$$

where π is a permutation on $\{1, \ldots, k\}$. Moreover, the administrator derives the frequency of each choice and announces the outcome as those frequencies, along with proofs demonstrating correctness of mixing and decryption. Finally, any interested party checks that the outcome corresponds to the decrypted choices and that all proofs verify, and voters verify that the ballots they constructed are amongst those collected.

Thus, proven secure election schemes are essential. Indeed, we have seen how vulnerabilities were discovered whilst attempting to prove Helios secure. Yet, proven secure election schemes are not sufficient. And implementing secure election schemes remains a significant research challenge.

Our notions of secrecy and verifiability generalise beyond elections. For instance, definitions of ballot secrecy and election verifiability can be adapted to capture definitions of bid secrecy and auction verifiability, and auction schemes satisfying bid secrecy and auction verifiability can be derived from elections schemes satisfying analogous security properties [22, 26]. Thereby inaugurating the unification of auctions and elections. Moreover, the notions generalise to other settings that require strong forms of integrity and privacy.

This article contributes to the science of security by sharing valuable insights into elections and by demonstrating the value that formal definitions and analysis have in building schemes guaranteed to behave as expected. In particular, formulations of secrecy and verifiability facilitate the construction of secret, verifiable election schemes. Indeed, we have seen how Helios has advanced to thwart some attacks.

We hope this article aids democracy-builders in deploying their systems and helps educate administrators, policymakers and voters worldwide.

Acknowledgements. We are grateful to Aisha Chudasama Mahmud, Moshe Vardi and our anonymous reviewers for feedback that helped improve this article, and to Maxime Meyer for illustrating our games using PGF/TikZ.

References

[38] Universal Declaration of Human Rights, 1948.

