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Chapter 1

Introduction

This manual describes the ProVerif software package version 1.96. ProVerif is a tool for automatically
analyzing the security of cryptographic protocols. Support is provided for, but not limited to, crypto-
graphic primitives including: symmetric and asymmetric encryption; digital signatures; hash functions;
bit-commitment; and non-interactive zero-knowledge proofs. ProVerif is capable of proving reachability
properties, correspondence assertions, and observational equivalence. These capabilities are particularly
useful to the computer security domain since they permit the analysis of secrecy and authentication
properties. Moreover, emerging properties such as privacy, traceability, and verifiability can also be
considered. Protocol analysis is considered with respect to an unbounded number of sessions and an
unbounded message space. Moreover, the tool is capable of attack reconstruction: when a property
cannot be proved, ProVerif tries to reconstruct an execution trace that falsifies the desired property.

1.1 Applications of ProVerif

The applicability of ProVerif has been widely demonstrated. Protocols from the literature have been
successfully analyzed: flawed and corrected versions of Needham-Schroeder public-key [NS78, Low96]
and shared key [NS78, BAN89, NS87]; Woo-Lam public-key [WL92, WL97] and shared-key [WL92,
AN95, AN96, WL97, GJ03]; Denning-Sacco [DS81, AN96]; Yahalom [BAN89]; Otway-Rees [OR87, AN96,
Pau98]; and Skeme [Kra96]. The resistance to password guessing attacks has been demonstrated for the
password-based protocols EKE [BM92] and Augmented EKE [BM93].

ProVerif has also been used in more substantial case studies:

• Abadi & Blanchet [AB05b] used correspondence assertions to verify the certified email proto-
col [AGHP02].

• Abadi, Blanchet & Fournet [ABF07] analyze the JFK (Just Fast Keying) [ABB+04] protocol, which
was one of the candidates to replace IKE as the key exchange protocol in IPSec, by combining
manual proofs with ProVerif proofs of correspondences and equivalences.

• Blanchet & Chaudhuri [BC08] studied the integrity of the Plutus file system [KRS+03] on un-
trusted storage, using correspondence assertions, resulting in the discovery, and subsequent fixing,
of weaknesses in the initial system.

• Bhargavan et al. [BFGT06, BFG06, BFGS08] use ProVerif to analyze cryptographic protocol im-
plementations written in F#; in particular, the Transport Layer Security (TLS) protocol has been
studied in this manner [BCFZ08].

• Chen & Ryan [CR09] have evaluated authentication protocols found in the Trusted Platform Mod-
ule (TPM), a widely deployed hardware chip, and discovered vulnerabilities.

• Delaune, Kremer & Ryan [DKR09, KR05] and Backes, Hritcu & Maffei [BHM08] formalize and
analyze privacy properties for electronic voting using observational equivalence.
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2 CHAPTER 1. INTRODUCTION

• Delaune, Ryan & Smyth [DRS08] and Backes, Maffei & Unruh [BMU08] analyze the anonymity
properties of the trusted computing scheme Direct Anonymous Attestation (DAA) [BCC04, SRC07]
using observational equivalence.

• Küsters & Truderung [KT09, KT08] examine protocols with Diffie-Hellman exponentiation and
XOR.

• Smyth, Ryan, Kremer & Kourjieh [SRKK10, SRK10] formalize and analyze verifiability properties
for electronic voting using reachability.

For further examples, please refer to: http://proverif.inria.fr/proverif-users.html.

1.2 Scope of this manual

This manual provides an introductory description of the ProVerif software package version 1.96. The
remainder of this chapter covers software support (Section 1.3) and installation (Section 1.4). Chap-
ter 2 provides an introduction to ProVerif aimed at new users, advanced users may skip this chapter
without loss of continuity. Chapter 3 demonstrates the basic use of ProVerif. Chapter 4 provides a
more complete coverage of the features of ProVerif. Chapter 5 demonstrates the applicability of ProVerif
with a case study. Chapter 6 considers advanced topics and Chapter 7 concludes. For reference, the
complete grammar of ProVerif is presented in Appendix A. This manual does not attempt to describe
the theoretical foundations of the internal algorithms used by ProVerif since these are available elsewhere
(see Chapter 7 for references); nor is the applied pi calculus [AF01, RS10], which provides the basis for
ProVerif, discussed.

1.3 Support

Software bugs and comments should be reported by e-mail to:

Bruno.Blanchet@inria.fr

User support, general discussion and new release announcements are provided by the ProVerif mailing
list. To subscribe to the list, send an email to sympa@inria.fr with the subject “subscribe proverif”
(without quotes). To post on the list, send an email to:

proverif@inria.fr

Non-members are not permitted to send messages to the mailing list.

1.4 Installation

ProVerif is compatible with the Linux, Mac, and Windows operating systems; it can be downloaded
from:

http://proverif.inria.fr/

ProVerif has been developed using Objective Caml (OCaml), accordingly OCaml version 3.0 or higher is
a prerequisite to installation1 and can be downloaded from http://caml.inria.fr/. OCaml provides a
byte-code compiler (ocamlc) and a native-code compiler (ocamlopt). Although ProVerif does not strictly
require the native-code compiler, it is highly recommended to achieve large performance gains. The
installation of graphviz is required if you want to have a drawing of the graph representing the attacks
that ProVerif might found. Graphviz can be downloaded from http://graphviz.org. Furthermore,
on Mac OS X, you need to install XCode if you do not already have it. It can be downloaded from
https://developer.apple.com/xcode/. The remainder of this section covers installation on Linux,
Mac, and Windows platforms.

1Windows users can make use of the ProVerif binary distribution and hence do not require OCaml.
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1.4.1 Linux/Mac installation

1. Decompress the archives:

(a) using GNU tar

tar -xzf proverif1.96.tar.gz

tar -xzf proverifdoc1.96.tar.gz

(b) using tar

gunzip proverif1.96.tar.gz

tar -xf proverif1.96.tar

gunzip proverifdoc1.96.tar.gz

tar -xf proverifdoc1.96.tar

This will create a directory proverif1.96 in the current directory.

2. You are now ready to build ProVerif:

cd proverif1.96

./build

3. ProVerif has now been successfully installed.

1.4.2 Windows installation

Windows users may install ProVerif using either the binary (recommended) or source distribution. Note
that the binary installation does not require OCaml to be installed.

From binary

1. Decompress the proverifbsd1.96.tar.gz and proverifdoc1.96.tar.gz archives in the same
directory using your favorite file archive tool (e.g. WinZip).

2. ProVerif has now been successfully installed in the directory where the file was extracted.

From source.

1. Decompress the proverif1.96.tar.gz and proverifdoc1.96.tar.gz archives in the same direc-
tory using your favorite file archive tool (e.g. WinZip).

2. Open a command shell and change to the directory where the file was extracted.

3. You are now ready to build ProVerif:

./build.bat

4. ProVerif has now been successfully installed.

Note: this installation procedure, using the build.bat script, relies on the OCaml bytecode compiler,
which works in all Windows installations. If you have installed cygwin and want to install from source,
you should rather use the Linux/Mac installation procedure, which allows you to use the OCaml native
code compiler.
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1.4.3 Emacs

If you use the emacs text editor for editing ProVerif input files, you can install the emacs mode provided
with the ProVerif distribution.

1. Copy the file emacs/proverif.el to a directory where Emacs will find it (that is, in your emacs
load-path).

2. Add the following lines to your .emacs file:

(setq auto-mode-alist

(cons ’("\\.horn$" . proverif-horn-mode)

(cons ’("\\.horntype$" . proverif-horntype-mode)

(cons ’("\\.pv$" . proverif-pv-mode)

(cons ’("\\.pi$" . proverif-pi-mode) auto-mode-alist)))))

(autoload ’proverif-pv-mode "proverif" "Major mode for editing ProVerif code." t)

(autoload ’proverif-pi-mode "proverif" "Major mode for editing ProVerif code." t)

(autoload ’proverif-horn-mode "proverif" "Major mode for editing ProVerif code." t)

(autoload ’proverif-horntype-mode "proverif" "Major mode for editing ProVerif code." t)

1.5 Copyright

ProVerif software (source) is distributed under the GNU general public license. For details see:

http://proverif.inria.fr/LICENSEGPL

The Windows binary distribution is under BSD license, for details see:

http://proverif.inria.fr/LICENSEBSD



Chapter 2

Getting started

This chapter provides a basic introduction to ProVerif and is aimed at new users; experienced users may
choose to skip this chapter. ProVerif is a command-line tool which can be executed using the syntax:

./proverif [options] 〈filename〉

where ./proverif is ProVerif’s binary; 〈filename〉 is the input file; and command-line parameters
[options] will be discussed later (Section 6.2.1). ProVerif can handle input files encoded in several
languages. The typed pi calculus is currently considered to be state-of-the-art and files of this sort
are denoted by the file extension .pv. This manual will focus on protocols encoded in the typed
pi calculus. (For the interested reader, other input formats are mentioned in Section 6.2.1 and in
docs/manual-untyped.pdf.) The pi calculus is designed for representing concurrent processes that
interact using communications channels such as the Internet.

ProVerif is capable of proving reachability properties, correspondence assertions, and observational
equivalence. This chapter will demonstrate the use of reachability properties and correspondence as-
sertions in a very basic manner. The true power of ProVerif will be discussed in the remainder of this
manual.

Reachability properties. Let us consider the ProVerif script:

1 (∗ h e l l o . pv : He l l o World Sc r i p t ∗)
2
3 free c : channel .
4
5 free Cocks : b i t s t r i n g [ private ] .
6 free RSA: b i t s t r i n g [ private ] .
9

10 process

11 out ( c ,RSA) ;
12 0

Line 1 contains the comment “hello.pv: Hello World Script”; comments are enclosed by (∗ comment ∗).
Line 3 declares the free name c of type channel which will later be used for public channel communication.
Lines 5 and 6 declare the free names Cocks and RSA of type bitstring , the keyword [private] excludes
the names from the adversary’s knowledge. Line 10 declares the start of the main process. Line 11
outputs the name RSA on the channel c. Finally, the termination of the process is denoted by 0 on
Line 12.

Names may be of any type, but we explicitly distinguish names of type channel from other types,
since the former may be used as a communications channel for message input/output. The concept of
bound and free names is similar to local and global scope in programming languages; that is, free names
are globally known, whereas bound names are local to a process. By default, free names are known
by the adversary. Free names that are not known by the adversary must be declared private with the
addition of the keyword [private]. The message output on Line 11 is broadcast using a public channel

5
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because the channel name c is a free name; whereas, if c were a bound name or explicitly excluded from
the adversary’s knowledge, then the communication would be on a private channel. For convenience, the
final line may be omitted and hence out(c,RSA) is an abbreviation of out(c,RSA);0.

Properties of the aforementioned script can be examined using ProVerif. For example, to test as to
whether the names Cocks and RSA are available derivable by the adversary, the following lines can be
included before the main process:

7 query a t tacke r (RSA) .
8 query a t tacke r ( Cocks ) .

Internally, ProVerif attempts to prove that a state in which the names Cocks and RSA are known to the
adversary is unreachable (that is, it tests the queries not attacker(RSA) and not attacker(Cocks), and
these queries are true when the names are not derivable by the adversary). This makes ProVerif suitable
for proving the secrecy of terms in a protocol.

Executing ProVerif (./proverif docs/hello.pv) produces the output:

Process:

{1}out(c, RSA)

-- Query not attacker(Cocks[])

Completing...

Starting query not attacker(Cocks[])

RESULT not attacker(Cocks[]) is true.

-- Query not attacker(RSA[])

Completing...

Starting query not attacker(RSA[])

goal reachable: attacker(RSA[])

1. The message RSA[] may be sent to the attacker at output {1}.

attacker(RSA[]).

A more detailed output of the traces is available with

set traceDisplay = long.

out(c, RSA) at {1}

The attacker has the message RSA.

A trace has been found.

RESULT not attacker(RSA[]) is false.

As can be interpreted from RESULT not attacker:(Cocks[]) is true, the attacker has not been able
to obtain the free name Cocks. The attacker has, however, been able to obtain the free name RSA as
denoted by the RESULT not attacker:(RSA[]) is false. ProVerif is also able to provide an attack
trace. In this instance, the trace is very short and denoted by a single line out(c, RSA) at {1} which
means that the name RSA is output on channel c at point {1} in the process, where point {1} is anno-
tated on Line 2 of the output. ProVerif also provides an English language description of the derivation
denoted by “1. The message RSA[] may be sent to the attacker at output {1}.” (A derivation
is the ProVerif internal representation of how the attacker may break the desired property, here may ob-
tain RSA. It generally corresponds to an attack as in the example above, but may sometimes correspond
to a false attack because of the internal approximations made by ProVerif. In contrast, when ProVerif
presents a trace, it always corresponds to a real attack. See Section 3.3 for more details.)

Correspondence assertions. Let us now consider an extended variant docs/hello ext.pv of the
script:

1 (∗ h e l l o e x t . pv : He l l o Extended World Sc r i p t ∗)
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2
3 free c : channel .
4
5 free Cocks : b i t s t r i n g [ private ] .
6 free RSA: b i t s t r i n g [ private ] .
7
8 event evCocks .
9 event evRSA .

10
11 query event ( evCocks ) ==> event (evRSA ) .
12
13 process

14 out ( c ,RSA) ;
15 in ( c , x : b i t s t r i n g ) ;
16 i f x = Cocks then

17 event evCocks ;
18 event evRSA
19 else

20 event evRSA

Lines 1-7 should be familiar. Lines 8-9 declare events evCocks and evRSA. Intuition suggests that Line 11
is some form of query. Lines 13-14 should again be standard. Line 15 contains a message input of type
bitstring on channel c which it binds to the variable x. Lines 16-20 denote an if-then-else statement;
the body of the then branch can be found on Lines 17-18 and the else branch on Line 20. We remark
that the code presented is a shorthand for the more verbose

i f x = Cocks then event evCocks ; event evRSA;0 else event evRSA;0

where 0 denotes the end of a branch (termination of a process). The statement event evCocks (similarly
event evRSA) declares an event and the query

query event ( evCocks ) ==> event (evRSA)

is true if and only if, for all executions of the protocol, if the event evCocks has been executed, then the
event evRSA has also been executed before. Executing the script produces the output:

Process:

{1}out(c, RSA);

{2}in(c, x: bitstring);

{3}if (x = Cocks) then

{4}event evCocks;

{5}event evRSA

else

{6}event evRSA

-- Query event(evCocks) ==> event(evRSA)

Completing...

Starting query event(evCocks) ==> event(evRSA)

RESULT event(evCocks) ==> event(evRSA) is true.

As expected, it is not possible to witness the event evCocks without having previously executed the event
evRSA and hence the correspondence event(evCocks) ==> event(evRSA) is true. In fact, a stronger
property is true: the event evCocks is unreachable. The reader can verify this claim with the addition of
query event(evCocks). (The authors remark that writing code with unreachable points is a common
source of errors for new users. Advice on avoiding such pitfalls will be presented in Section 4.3.1.)
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Chapter 3

Using ProVerif

The primary goal of ProVerif is the verification of cryptographic protocols. Cryptographic protocols
are concurrent programs which interact using public communication channels such as the Internet to
achieve some security-related objective. These channels are assumed to be controlled by a very powerful
environment which captures an attacker with “Dolev-Yao” capabilities [DY83]. Since the attacker has
complete control of the communication channels, the attacker may: read, modify, delete, and inject
messages. The attacker is also able to manipulate data, for example: compute the ith element of a
tuple; and decrypt messages if it has the necessary keys. The environment also captures the behavior
of dishonest participants; it follows that only honest participants need to be modeled. ProVerif’s input
language allows such cryptographic protocols and associated security objectives to be encoded in a formal
manner, allowing ProVerif to automatically verify claimed security properties. Cryptography is assumed
to be perfect; that is, the attacker is only able to perform cryptographic operations when in possession
of the required keys. In other words, it cannot apply any polynomial-time algorithm, but is restricted to
apply only the cryptographic primitives specified by the user. The relationships between cryptographic
primitives are captured using rewrite rules and/or an equational theory.

In this chapter, we demonstrate how to use ProVerif for verifying cryptographic protocols, by consid-
ering a näıve handshake protocol (Figure 3.1) as an example. Section 3.1 discusses how cryptographic
protocols are encoded within ProVerif’s input language, a variant of the applied pi calculus [AF01, RS10]
which supports types; Section 3.2 shows the security properties that can be proved by ProVerif; and Sec-
tion 3.3 explains how to understand ProVerif’s output.

3.1 Modeling protocols

A ProVerif model of a protocol, written in the tool’s input language (the typed pi calculus), can be divided
into three parts. The declarations formalize the behavior of cryptographic primitives (Section 3.1.1); and
their use is demonstrated on the handshake protocol (Section 3.1.2). Process macros (Section 3.1.3) allow
sub-processes to be defined, in order to ease development; and finally, the protocol itself can be encoded
as a main process (Section 3.1.4), with the use of macros.

3.1.1 Declarations

Processes are equipped with a finite set of types, free names, and constructors (function symbols) which
are associated with a finite set of destructors. The language is strongly typed and user-defined types are
declared as

type t .

All free names appearing within an input file must be declared using the syntax

free n : t .

where n is a name and t is its type. The syntax channel c. is a synonym for free c: channel. By default,
free names are known by the adversary. Free names that are not known by the adversary must be
declared private:

9
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Figure 3.1 Handshake protocol

A näıve handshake protocol between client A and server B is illustrated below. It is assumed that each
principal has a public/private key pair, and that the client A knows the server B’s public key pk(skB).
The aim of the protocol is for the client A to share the secret s with the server B. The protocol proceeds
as follows. On request from a client A, server B generates a fresh symmetric key k (session key), pairs it
with his identity (public key pk(skB)), signs it with his secret key skB and encrypts it using his client’s
public key pk(skA). That is, the server sends the message aenc(sign((pk(skB),k),skB),pk(skA)). When
A receives this message, she decrypts it using her secret key skA, verifies the digital signature made by
B using his public key pk(skB), and extracts the session key k. A uses this key to symmetrically encrypt
the secret s. The rationale behind the protocol is that A receives the signature asymmetrically encrypted
with her public key and hence she should be the only one able to decrypt its content. Moreover, the
digital signature should ensure that B is the originator of the message. The messages sent are illustrated
as follows:

A → B : pk(skA)
B → A : aenc(sign((pk(skB),k),skB),pk(skA))
A → B : senc(s ,k)

Note that protocol narrations (as above) are useful, but lack clarity. For example, they do not specify any
checks which should be made by the participants during the execution of the protocol. Such checks include
verifying digital signatures and ensuring that encrypted messages are correctly formed. Failure of these
checks typically results in the participant aborting the protocol. These details will be explicitly stated
when protocols are encoded for ProVerif. (For further discussion on protocol specification, see [AN96,
Aba00].)
Informally, the three properties we would like this protocol to provide are:

1. Secrecy: the value s is known only to A and B.

2. Authentication of A to B: if B reaches the end of the protocol and he believes he has shared the
key k with A, then A was indeed his interlocutor and she has shared k.

3. Authentication of B to A: if A reaches the end of the protocol with shared key k, then B proposed
k for use by A.

However, the protocol is vulnerable to a man-in-the-middle attack (illustrated below). If a dishonest
participant I starts a session with B, then I is able to impersonate B in a subsequent session the client
A starts with B. At the end of the protocol, A believes that she shares the secret s with B, while she
actually shares s with I.

I → B : pk(skI)
B → I : aenc(sign((pk(skB),k),skB),pk(skI))
A → B : pk(skA)
I → A : aenc(sign((pk(skB),k),skB),pk(skA))
A → B : senc(s ,k)

The protocol can easily be corrected by adding the identity of the intended client:

A → B : pk(skA)
B → A : aenc(sign((pk(skA),pk(skB),k),skB),pk(skA))
A → B : senc(s ,k)

With this correction, I is not able to re-use the signed key from B in her session with A.
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free n : t [ private ] .

Constructors (function symbols) are used to build terms modeling primitives used by cryptographic
protocols; for example: one-way hash functions, encryptions, and digital signatures. Constructors are
defined by

fun f(t1, . . . , tn) : t .

where f is a constructor of arity n, t is its return type, and t1, . . . , tn are the types of its arguments.
Constructors are available to the attacker unless they are declared private:

fun f(t1, . . . , tn) : t [ private ] .

Private constructors can be useful for modeling tables of keys stored by the server (see Section 6.3.2),
for example.

The relationships between cryptographic primitives are captured by destructors which are used to
manipulate terms formed by constructors. Destructors are modeled using rewrite rules of the form:

reduc fora l l x1,1 : t1,1, . . . , x1,n1
: t1,n1

; g(M1,1, . . . ,M1,k) = M1,0 ;
. . .
f o ra l l xm,1 : tm,1, . . . , xm,nm

: tm,nm
; g(Mm,1, . . . ,Mm,k) = Mm,0 .

where g is a destructor of arity k. The terms M1,1, . . . ,M1,k,M1,0 are built from the application of
constructors to variables x1,1, . . . , x1,n1

of types t1,1, . . . , t1,n1
respectively (and similarly for the other

rewrite rules). The return type of g is the type M1,0 and M1,0, . . . ,Mm,0 must have the same type. We
similarly require that the arguments of the destructor have the same type; that is, M1,1, . . . ,M1,k have
the same types as Mi,1, . . . ,Mi,k for i ∈ [2,m], and these types are the types of the arguments of g. When
the term g(M1,1, . . . ,M1,k) (or an instance of that term) is encountered during execution, it is replaced
by M1,0, and similarly for the other rewrite rules. When no rule can be applied, the destructor fails, and
the process blocks (except for the let process, see Section 3.1.4). This behavior corresponds to real world
application of cryptographic primitives which include sufficient redundancy to detect scenarios in which
an operation fails. For example, in practice, encrypted messages may be assumed to come with sufficient
redundancy to discover when the ‘wrong’ key is used for decryption. It follows that destructors capture
the behavior of cryptographic primitives which can visibly fail. Destructors must be deterministic, that
is, for each terms (M1, . . . ,Mk) given as argument to g, when several rewrite rules apply, they must
all yield the same result and, in the rewrite rules, the variables that occur in Mi,0 must also occur
in Mi,1, . . . ,Mi,k, so that the result of g(M1, . . . ,Mk) is entirely determined. In a similar manner to
constructors, destructors may be declared private by appending [private]. The generic mechanism by
which primitives are encoded permits the modeling of various cryptographic operators.

3.1.2 Example: Declaring cryptographic primitives for the handshake pro-
tocol

We now formalize the basic cryptographic primitives used by the handshake protocol.

Symmetric encryption. For symmetric encryption, we define the type key and consider the binary
constructor senc which takes arguments of type bitstring , key and returns a bitstring .

1 type key .
2
3 fun senc ( b i t s t r i n g , key ) : b i t s t r i n g .

Note that the type bitstring is built-in, and hence, need not be declared as a user-defined type. The type
key is not built-in and hence we declare it on Line 1. To model the decryption operation, we introduce
the destructor:

4 reduc fora l l m: b i t s t r i n g , k : key ; sdec ( senc (m, k ) , k ) = m.

where m represents the message and k represents the symmetric key.
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Asymmetric encryption. For asymmetric cryptography, we consider the unary constructor pk, which
takes an argument of type skey (private key) and returns a pkey (public key), to capture the notion of
constructing a key pair. Decryption is captured in a similar manner to symmetric cryptography with a
public/private key pair used in place of a symmetric key.

5 type skey .
6 type pkey .
7
8 fun pk ( skey ) : pkey .
9 fun aenc ( b i t s t r i n g , pkey ) : b i t s t r i n g .

10
11 reduc fora l l m: b i t s t r i n g , k : skey ; adec ( aenc (m, pk (k ) ) , k ) = m.

Digital signatures. In a similar manner to asymmetric encryption, digital signatures rely on a pair of
signing keys of types sskey (private signing key) and spkey (public signing key). We will consider digital
signatures with message recovery:

12 type s skey .
13 type spkey .
14
15 fun spk ( sskey ) : spkey .
16 fun s i gn ( b i t s t r i n g , s skey ) : b i t s t r i n g .
17
18 reduc fora l l m: b i t s t r i n g , k : s skey ; getmess ( s i gn (m, k ) ) = m.
19 reduc fora l l m: b i t s t r i n g , k : s skey ; checks ign ( s i gn (m, k ) , spk (k ) ) = m.

The constructors spk, for creating public keys, and sign, for constructing signatures, are standard.
The destructors permit message recovery and signature verification. The destructor getmess allows the
adversary to get the message m from the signature, even without having the key. The destructor checksign
checks the signature, and returns m only when the signature is correct. Honest processes typically use
only checksign. This model of signatures assumes that the signature is always accompanied with the
message m. It is also possible to model signatures that do not reveal the message m, see Section 4.2.5.

Tuples and typing. For convenience, ProVerif has built-in support for tupling. A tuple of length
n > 1 is defined as (M1, . . . ,Mn) where M1, . . . ,Mn are terms of any type. Once in possession of a tuple,
the adversary has the ability to recover the ith element. The inverse is also true: if the adversary is
in possession of terms M1, . . . ,Mn, then it can construct the tuple (M1, . . . ,Mn). Tuples are always of
type bitstring. Accordingly, constructors that take arguments of type bitstring may be applied to tuples.
Note that the term (M) is not a tuple and is equivalent to M . (Parentheses are needed to override the
default precedence of infix operators.) It follows that (M) and M have the same type and that tuples of
arity one do not exist.

3.1.3 Process macros

To facilitate development, protocols need not be encoded into a single main process (as we did in
Section 2). Instead, sub-processes may be specified in the declarations using macros of the form

l et R(x1 : t1, . . . , xn : tn) = P .

where R is the macro name, P is the sub-process being defined, and x1, . . . , xn, of types t1, . . . , tn
respectively, are the free variables of P . The macro expansion R(M1, . . . ,Mn) will then expand to P with
M1 substituted for x1, . . . , Mn substituted for xn. As an example, consider a variant docs/hello var.pv

of docs/hello.pv (previously presented in Chapter 2):

free c : channel .

free Cocks : b i t s t r i n g [ private ] .
free RSA: b i t s t r i n g [ private ] .
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query a t tacke r ( Cocks ) .

l et R(x : b i t s t r i n g ) = out ( c , x ) ; 0 .

l et R’ ( y : b i t s t r i n g )= 0 .

process R(RSA) | R’ ( Cocks )

By inspection of ProVerif’s output (see Section 3.3 for details on ProVerif’s output), one can observe
that this process is identical to the one in which the macro definitions are omitted and are instead
expanded upon in the main process. It follows immediately that macros are only an encoding which we
find particularly useful for development.

3.1.4 Processes

The basic grammar of the language is presented in Figure 3.2; advanced features will be discussed in
Chapter 4; and the complete grammar is presented in Appendix A for reference.

Terms M,N consist of names a, b, c, k,m, n, s; variables x, y, z; tuples (M1, . . . ,Mj) where j is the
arity of the tuple; and constructor/destructor application, denoted h(M1, . . . ,Mk) where k is the arity
of h and arguments M1, . . . ,Mk have the required types. Some functions use the infix notation: M = N
for equality, M <> N for inequality (both equality and inequality work modulo an equational theory;
they take two arguments of the same type and return a result of type bool), M && M for the boolean
conjunction, M || M for the boolean disjunction. We use not(M) for the boolean negation. In boolean
operations, all values different from true (modulo an equational theory) are considered as false . Fur-
thermore, if the first argument of M && M is not true, then the second argument is not evaluated and
the result is false . Similarly, if the first argument of M || M is true, then the second argument is not
evaluated and the result is true.

Processes P,Q are defined as follows. The null process 0 does nothing; P | Q is the parallel com-
position of processes P and Q, used to represent participants of a protocol running in parallel; and the
replication !P is the infinite composition P | P | . . ., which is often used to capture an unbounded number
of sessions. Name restriction new n : t; P binds name n of type t inside P , the introduction of restricted
names (or private names) is useful to capture both fresh random numbers (modeling nonces and keys,
for example) and private channels. Communication is captured by message input and message output.
The process in(M,x : t); P awaits a message of type t from channel M and then behaves as P with the
received message bound to the variable x; that is, every free occurrence of x in P refers to the message
received. The process out(M,N); P is ready to send N on channel M and then run P . In both of these
cases, we may omit P when it is 0. The conditional if M then P else Q is standard: it runs P when
the boolean term M evaluates to true, it runs Q when M evaluates to some other value. It executes
nothing when the term M fails (for instance, when M contains a destructor for which no rewrite rule
applies). For example, if M = N then P else Q tests equality of M and N . For convenience, condi-
tionals may be abbreviated as if M then P when Q is the null process. The power of destructors can
be capitalized upon by let x = M in P else Q statements where M may contain destructors. When
this statement is encountered during process execution, there are two possible outcomes. If the term M
does not fail (that is, for all destructors in M , matching rewrite rules exist), then x is bound to M and
the P branch is taken; otherwise (rather than blocking), the Q branch is taken. (In particular, when M
never fails, the P branch will always be executed with x bound to M .) For convenience, the statement
let x = M in P else Q may be abbreviated as let x = M in P when Q is the null process. Finally, we
have R(M1, . . . ,Mn), denoting the use of the macro R with terms M1, . . . ,Mn as arguments.

Pattern matching.

For convenience, ProVerif supports pattern matching and we extend the grammar to include patterns
(Figure 3.3). The variable pattern x : t matches any term of type t and binds the matched term to x. The
variable pattern x is similar, but can be used only when the type of x can be inferred from the context.
The tuple pattern (T1, . . . , Tn) matches tuples (M1, . . . ,Mn) where each component Mi (i ∈ {1, . . . , n})
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Figure 3.2 Term and process grammar

M,N ::= terms
a, b, c, k,m, n, s names
x, y, z variables
(M1, . . . ,Mk) tuple
h(M1, . . . ,Mk) constructor/destructor application
M = N term equality
M <> N term inequality
M && M conjunction
M || M disjunction
not(M) negation

P,Q ::= processes
0 null process
P | Q parallel composition
!P replication
new n : t; P name restriction
in(M,x : t); P message input
out(M,N); P message output
if M then P else Q conditional
let x = M in P else Q term evaluation
R(M1, . . . ,Mk) macro usage

Figure 3.3 Pattern matching grammar

T ::= patterns
x : t typed variable
x variable without explicit type
(T1, ..., Tn) tuple
=M equality test
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is recursively matched with Ti. Finally, the pattern =M matches terms N where M = N . (This is
equivalent to an equality test.)

To make use of patterns, the grammar for processes is modified. We omit the rule in(M,x : t); P
and instead consider in(M,T ); P which awaits a message matching the pattern T and then behaves as
P with the free variables of T bound inside P . Similarly, we replace let x = M in P else Q with the
more general let T = M in P else Q. (Note that let x = M in P else Q is a particular case in which
the type of x is inferred from M ; users may also write let x : t = M in P else Q where t is the type of
M , ProVerif will produce an error if there is a type mismatch.)

Scope and binding.

Bracketing must be used to avoid ambiguities in the way processes are written down. For example,
the process !P | Q might be interpreted as !(P | Q), or as (!P ) | Q. These processes are different.
To avoid too much bracketing, we adopt conventions about the precedence of process operators. The
binary parallel process P | Q binds most closely; followed by the binary processes if M then P else Q,
let x = M in P else Q; finally, unary processes bind least closely. It follows that !P | Q is interpreted
as !(P | Q). Users should pay particular attention to ProVerif warning messages since these typically
arise from misunderstanding ProVerif’s binding conventions. For example, consider the process

new n : t ; out ( c , n ) | new n : t ; in ( c , x : t ) ; 0 | i f x = n then 0 | out ( c , n )

which produces the message “Warning: identifier n rebound.” Moreover, the process will never perform
the final out(c,n) because the process is bracketed as follows:

new n : t ; ( out ( c , n ) | new n : t ; ( in ( c , x : t ) ; 0 | i f x = n then (0 | out ( c , n ) ) ) )

and hence the final output is guarded by a conditional which can never be satisfied. The authors
recommend the distinct naming of names and variables to avoid confusion. New users may like to
refer to the output produced by ProVerif to ensure that they have defined processes correctly (see also
Section 3.3). Another possible ambiguity arises because of the convention of omitting else 0 in the
if-then-else construct (and similarly for let-in-else): it is not clear which if the else applies to in the
expression:

i f M = M ′ then i f N = N ′ then P else Q

In this instance, we adopt the convention that the else branch belongs to the closest if and hence the
statement should be interpreted as if M = M ′ then (if N = N ′ then P else Q). The convention is
similar for let-in-else.

Remarks about syntax

The restrictions on identifiers (Figure 3.2) for constructors/destructors h, names a, b, c, k,m, n, s, types
t, and variables x, y, z are completely relaxed. Formally, we do not distinguish between identifiers and
let identifiers range over an unlimited sequence of letters (a-z, A-Z), digits (0-9), underscores ( ), single-
quotes (’), and accented letters from the ISO Latin 1 character set where the first character of the
identifier is a letter and the identifier is distinct from the reserved words. Note that identifiers are case
sensitive. Comments can be included in input files and are surrounded by (* and *). Nested comments
are not supported.

Reserved words. The following is a list of keywords in the ProVerif language; accordingly, they cannot
be used as identifiers.

among, channel, choice, clauses, const, def, diff, elimtrue, else, equation, equivalence, event,
expand, fail, forall, free, fun, get, if, in, inj-event, insert, let, letfun, new, noninterf, not,
nounif, or, otherwise, out, param, phase, pred, proba, process, proof, putbegin, query, reduc,
set, suchthat, sync, table, then, type, weaksecret, yield.

ProVerif also has built-in types bitstring , bool and constants true, false of type bool; although these
identifiers can be reused as identifiers, the authors strongly discourage this practice.
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3.1.5 Example: handshake protocol

We are now ready to present an encoding of the handshake protocol, available in docs/ex handshake.pv

(for brevity, we omit function/type declarations and destructors, for details see Section 3.1.1):

1 free c : channel .
2
3 free s : b i t s t r i n g [ private ] .
4 query a t tacke r ( s ) .
5
6 l et c l i en tA (pkA : pkey , skA : skey , pkB : spkey ) =
7 out ( c , pkA ) ;
8 in ( c , x : b i t s t r i n g ) ;
9 l et y = adec (x , skA) in

10 l et (=pkB , k : key ) = checks ign (y , pkB) in

11 out ( c , senc ( s , k ) ) .
12
13 l et serverB (pkB : spkey , skB : sskey ) =
14 in ( c , pkX : pkey ) ;
15 new k : key ;
16 out ( c , aenc ( s i gn ( (pkB , k ) , skB ) ,pkX ) ) ;
17 in ( c , x : b i t s t r i n g ) ;
18 l et z = sdec (x , k ) in

19 0 .
20
21 process

22 new skA : skey ;
23 new skB : sskey ;
24 l et pkA = pk( skA) in out ( c , pkA ) ;
25 l et pkB = spk ( skB ) in out ( c , pkB ) ;
26 ( ( ! c l i en tA (pkA , skA , pkB) ) | ( ! serverB (pkB , skB ) ) )

The first line declares the public channel c. Lines 3-4 should be familiar from Section 2 and further
details will be given in Section 3.2. The client process is defined by the macro starting on Line 6 and
the server process is defined by the macro starting on Line 13. The main process generates the private
asymmetric key skA and the private signing key skB for principals A, B respectively (Lines 22-23). The
public key parts pk(skA), spk(skB) are derived and then output on the public communications channel c
(Lines 24-25), ensuring that they are available to the adversary. (Observe that this is done using handles
pkA, pkB for convenience.) The main process also instantiates multiple copies of the client and server
macros with the relevant parameters representing multiple sessions of the roles.

We assume that the server B is willing to run the protocol with any other principal; the choice
of her interlocutor will be made by the environment. This is captured by modeling the first input
in(c,pkX:pkey) to serverB as his client’s public key pkX (Line 14). The client A on the other hand only
wishes to share his secret s with the server B; accordingly, B’s public key is hard-coded into the process
clientA. We additionally assume that each principal is willing to engage in an unbounded number of
sessions and hence clientA(pkA,skA,pkB) and serverB(pkB,skB) are under replication.

The client and server processes correspond exactly to the description presented in Figure 3.1 and we
will now describe the details of our encoding. On request from a client, server B starts the protocol
by selecting a fresh key k and outputting aenc(sign((pkB,k),skB),pkX) (Line 16); that is, her signature
on the key k paired with her identity spk(skB) and encrypted for his client using her public key pkX.
Meanwhile, the client A awaits the input of his interlocutor’s signature on the pair (pkB,k) encrypted
using his public key (Line 8). A verifies that the ciphertext is correctly formed using the destructor
adec on Line 9, which will visibly fail if x is not a message asymmetrically encrypted for the client;
that is, the (omitted) else branch of the statement will be evaluated because there is no corresponding
rewrite rule. The statement let (=pkB,k:key) = checksign(y,pkB) in on Line 10 uses destructors and
pattern matching with type checking to verify that y is a signature under skB containing a pair, where
the first element is the server’s public signing key and the second is a symmetric key k. If y is not a
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correct signature, then the (omitted) else branch of the statement will be evaluated because there is
no corresponding rewrite rule, so the client halts. Finally, the server inputs a bitstring x and recovers
the cleartext as variable z. (Observe that the failure of decryption is again detectable.) Note that the
variable z in the server process is not used.

3.2 Security properties

The ProVerif tool is able to prove reachability properties, correspondence assertions, and observational
equivalence. In this section, we will demonstrate how to prove the security properties of the handshake
protocol. A more complete coverage of the properties that ProVerif can prove is presented in Section 4.3.

3.2.1 Reachability and secrecy

Proving reachability properties is ProVerif’s most basic capability. The tool allows the investigation of
which terms are available to an attacker; and hence (syntactic) secrecy of terms can be evaluated with
respect to a model. To test secrecy of the term M in the model, the following query is included in the
input file before the main process:

query a t tacke r (M ) .

where M is a ground term, without destructors, containing free names (possibly private and hence
not initially known to the attacker). We have already demonstrated the use of secrecy queries on our
handshake protocol (see the code in Section 3.1.5).

3.2.2 Correspondence assertions, events, and authentication

Correspondence assertions [WL93] are used to capture relationships between events which can be ex-
pressed in the form “if an event e has been executed, then event e′ has been previously executed.” More-
over, these events may contain arguments, which allow relationships between the arguments of events to
be studied. To reason with correspondence assertions, we annotate processes with events, which mark
important stages reached by the protocol but do not otherwise affect behavior. Accordingly, we extend
the grammar for processes to include events denoted

event e(M1, . . . ,Mn) ; P

Importantly, the adversary’s knowledge is not extended by the terms M1, . . . ,Mn following the execution
of event e(M1, . . . ,Mn); hence, the execution of the process Q after inserting events is the execution
of Q without events from the perspective of the adversary. All events must be declared (in the list of
declarations in the input file) in the form event e(t1, . . . , tn). where t1, . . . , tn are the types of the event
arguments. Relationships between events may now be specified as correspondence assertions.

Correspondence

The syntax to query a basic correspondence assertion is:

query x1 : t1, . . . , xn : tn ; event (e(M1, . . . ,Mj)) ==> event (e′(N1, . . . , Nk) ) .

where M1, . . . ,Mj , N1, . . . , Nk are terms built by the application of constructors to the variables x1, . . . ,
xn of types t1, . . . , tn and e, e′ are declared as events. The query is satisfied if, for each occurrence of the
event e(M1, . . . ,Mj), there is a previous execution of e′(N1, . . . , Nk). Moreover, the parameterization
of the events must satisfy any relationships defined by M1, . . . ,Mj , N1, . . . , Nk; that is, the variables
x1, . . . , xn have the same value in M1, . . . ,Mj and in N1, . . . , Nk.

In such a query, the variables that occur before the arrow ==> (that is, inM1, . . . ,Mj) are universally
quantified, while the variables that occur after the arrow ==> (in N1, . . . , Nk) but not before are
existentially quantified. For instance,

query x : t1, y : t2, z : t3 ; event (e(x, y)) ==> event (e′(y, z) ) .

means that, for all x, y, for each occurrence of e(x, y), there is a previous occurrence of e′(y, z) for some
z.
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Injective correspondence

The definition of correspondence we have just discussed is insufficient to capture authentication in cases
where a one-to-one relationship between the number of protocol runs performed by each participant is
desired. Consider, for example, a financial transaction in which the server requests payment from the
client; the server should complete the transaction only once for each transaction started by the client. (If
this were not the case, the client could be charged for several transactions, even if the client only started
one.) The situation is similar for access control and other scenarios. Injective correspondence assertions
capture the one-to-one relationship and are denoted:

query x1 : t1, . . . , xn : tn ; inj−event (e(M1, . . . ,Mj)) ==> inj−event (e′(N1, . . . , Nk) ) .

Informally, this correspondence asserts that, for each occurrence of the event e(M1, . . . ,Mj), there is
a distinct earlier occurrence of the event e′(N1, . . . , Nk). It follows immediately that the number of
occurrences of e′(N1, . . . , Nk) is greater than, or equal to, the number of occurrences of e(M1, . . . ,Mj).
Note that using inj−event or event before the arrow ==> does not change the meaning of the query.
It is only important after the arrow.

3.2.3 Example: Secrecy and authentication in the handshake protocol

Authentication can be captured using correspondence assertions (additional applications of correspon-
dence assertions were discussed in §1.1). Recall that in addition to the secrecy property mentioned for
the handshake protocol in Figure 3.1, there were also authentication properties. The protocol is intended
to ensure that, if client A thinks she executes the protocol with server B, then she really does so, and
vice versa. When we say ‘she thinks’ that she executes it with B, we mean that the data she receives
indicates that fact. Accordingly, we declare the events:

• event acceptsClient(key), which is used by the client to record the belief that she has accepted to
run the protocol with the server B and the supplied symmetric key.

• event acceptsServer(key,pkey), which is used to record the fact that the server considers he has
accepted to run the protocol with a client, with the proposed key supplied as the first argument
and the client’s public key as the second.

• event termClient(key,pkey), which means the client believes she has terminated a protocol run
using the symmetric key supplied as the first argument and the client’s public key as the second.

• event termServer(key), which denotes the server’s belief that he has terminated a protocol run
with the client A with the symmetric key supplied as the first argument.

Recall that the client is only willing to share her secret with the server B; it follows that, if she completes
the protocol, then she believes she has done so with B and hence authentication of B to A should hold.
In contrast, server B is willing to run the protocol with any client (that is, he is willing to learn secrets
from many clients), and hence at the end of the protocol he only expects authentication of A to B to
hold, if he believes A was indeed his interlocutor (so termServer(x) is executed only when pkX = pkA).
We can now formalize the two authentication properties (given in Figure 3.1) for the handshake protocol.
They are, respectively:

query x : key , y : spkey ; event ( termCl ient (x , y))==>event ( a c c ep t sSe rve r (x , y ) ) .
query x : key ; inj−event ( termServer ( x))==>inj−event ( a c c ep t sC l i en t ( x ) ) .

The subtle difference between the two correspondence assertions is due to the differing authentication
properties expected by participants A and B. The first correspondence is not injective because the
protocol does not allow the client to learn whether the messages she received are fresh: the message from
the server to the client may be replayed, leading to several client sessions for a single server session. The
revised ProVerif encoding with annotations and correspondence assertions is presented below and in the
file docs/ex handshake annotated.pv (cryptographic declarations have been omitted for brevity):

1 free c : channel .
2
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3 free s : b i t s t r i n g [ private ] .
4 query a t tacke r ( s ) .
5
6 event ac c ep t sC l i en t ( key ) .
7 event accep t sSe rve r ( key , pkey ) .
8 event termCl ient ( key , pkey ) .
9 event termServer ( key ) .

10
11 query x : key , y : pkey ; event ( termCl ient (x , y))==>event ( a c c ep t sSe rve r (x , y ) ) .
12 query x : key ; inj−event ( termServer ( x))==>inj−event ( a c c ep t sC l i en t ( x ) ) .
13
14 l et c l i en tA (pkA : pkey , skA : skey , pkB : spkey ) =
15 out ( c , pkA ) ;
16 in ( c , x : b i t s t r i n g ) ;
17 l et y = adec (x , skA) in

18 l et (=pkB , k : key ) = checks ign (y , pkB) in

19 event ac c ep t sC l i en t ( k ) ;
20 out ( c , senc ( s , k ) ) ;
21 event termCl ient (k , pkA ) .
22
23 l et serverB (pkB : spkey , skB : sskey , pkA : pkey ) =
24 in ( c , pkX : pkey ) ;
25 new k : key ;
26 event accep t sSe rve r (k , pkX ) ;
27 out ( c , aenc ( s i gn ( (pkB , k ) , skB ) ,pkX ) ) ;
28 in ( c , x : b i t s t r i n g ) ;
29 l et z = sdec (x , k ) in

30 i f pkX = pkA then event termServer ( k ) .
31
32 process

33 new skA : skey ;
34 new skB : sskey ;
35 l et pkA = pk( skA) in out ( c , pkA ) ;
36 l et pkB = spk ( skB ) in out ( c , pkB ) ;
37 ( ( ! c l i en tA (pkA , skA , pkB) ) | ( ! serverB (pkB , skB , pkA) ) )

Figure 3.4 Messages and events for authentication

Client Server

event acceptsServermessage n− 1

event termClient

event acceptsClient message n

event termServer

There is generally some flexibility in the placement of events in a process, but not all choices are correct.
For example, in order to prove authentication in our handshake protocol, we consider the property

query x : key ; inj−event ( termServer ( x))==>inj−event ( a c c ep t sC l i en t ( x ) ) .

and the event termServer is placed when the server terminates (typically at the end of the protocol),
while acceptsClient is placed when the client accepts (typically before the client sends its last message).
Therefore, when the last message, message n, is from the client to the server, the placement of events
follows Figure 3.4: the last message sent by the client is message n, so acceptsClient is placed before the
client sends message n, and termServer is placed after the server receives message n. The last message
sent by the server is message n− 1, so acceptsServer is placed before the server sends message n− 1, and
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termClient is placed after the client receives message n − 1 (any position after that reception is fine).
More generally, the event that occurs before the arrow ==> can be placed at the end of the protocol, but
the event that occurs after the arrow ==> must be followed by at least one message output. Otherwise,
the whole protocol can be executed without executing the latter event, so the correspondence certainly
does not hold.

One can also note that moving an event that occurs before the arrow ==> towards the beginning of
the protocol strengthens the correspondence property, and moving an event that occurs after the arrow
==> towards the end of the protocol also strengthens the correspondence property. Adding arguments
to the events strengthens the correspondence property as well.

3.3 Understanding ProVerif output

The output produced by ProVerif is rather verbatim and can be overwhelming for new users. In essence
the output is in the following format:

[ Equations ]
Process :
[ Process ]

−− Query [ Query ]
Completing . . .
S t a r t i ng query [ Query ]
goa l [ un ] r eachab l e : [ Goal ]
Abbrev iat ions :
. . .

[ Attack de r i v a t i on ]

A more d e t a i l e d output o f the t r a c e s i s a v a i l a b l e with
set t r ac eD i sp l ay = long .

[ Attack t r a c e ]

RESULT [ Query ] [ r e s u l t ] .

where [Equations] summarizes the internal representation of the equations given in the input file (if any)
and [Process] presents the input process with all macros expanded and distinct identifiers assigned to
unique names/variables; in addition, parts of the process are annotated with identifiers {n} where n ∈ N

∗.
(New users may like to refer to this interpreted process to ensure they have defined the scope of variables
in the correct manner and to ensure they haven’t inadvertently bound processes inside if-then-else/let-
in-else statements.) ProVerif then begins to evaluate the [Query] provided by the user. Internally,
ProVerif attempts to prove that a state in which a property is violated is unreachable; it follows that
ProVerif shows the (un)reachability of some [Goal]. If a property is violated then ProVerif attempts to
reconstruct an [Attack derivation] in English and an [Attack trace] in the applied pi calculus. Finally,
ProVerif reports whether the query was satisfied. For convenience, Linux and cygwin users may make
use of the following command:

./proverif script.pv | grep "RES"

which reduces the output to the results of the queries.

3.3.1 Results

In order to understand the results correctly, it is important to understand the difference between the
attack derivation and the attack trace. The attack derivation is an explanation of the actions that the
attacker has to make in order to break the security property, in the internal representation of ProVerif.
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Because this internal representation uses abstractions, the derivation is not always executable in reality;
for instance, it may require the repetition of certain actions that can in fact never be repeated, for
instance because they are not under a replication. In contrast, the attack trace refers to the semantics
of the applied pi calculus, and always corresponds to an executable trace of the considered process.

ProVerif can display three kinds of results:

• RESULT [Query] is true: The query is proved, there is no attack. In this case, ProVerif displays
no attack derivation and no attack trace.

• RESULT [Query] is false: The query is false, ProVerif has discovered an attack against the desired
security property. The attack trace is displayed just before the result (and an attack derivation is
also displayed, but you should focus on the attack trace since it represents the real attack).

• RESULT [Query] cannot be proved: This is a “don’t know” answer. ProVerif could not prove that
the query is true and also could not find an attack that proves that the query is false. Since the
problem of verifying protocols for an unbounded number of sessions is undecidable, this situation
is unavoidable. Still, ProVerif gives some additional information that can be useful in order to
determine whether the query is true. In particular, ProVerif displays an attack derivation. By
manually inspecting the derivation, it is sometimes possible to reconstruct an attack. For observa-
tional equivalence properties, it may also display an attack trace, even if this trace does not prove
that the observational equivalence does not hold. We will come back to this point when we deal
with observational equivalence, in Section 4.3.2. Sources of incompleteness, which explain why
ProVerif sometimes fails to prove properties that hold, will be discussed in Section 6.3.4.

Interpreting results. Understanding the internal manner in which ProVerif operates is useful to in-
terpret the results output. Recall that ProVerif attempts to prove that a state in which a property is
violated is unreachable. It follows that when ProVerif is supplied with query attacker(M)., that inter-
nally ProVerif attempts to show not attacker(M) and hence RESULT not attacker(M) is true. means
that the secrecy of M is preserved by the protocol.

Error and warning messages. In case of a syntax error, ProVerif indicates the character position of
the error (line and column numbers). Please use your text editor to find the position of the error. (The er-
ror messages can be interpreted by emacs.) In addition, ProVerif may provide various warning messages.
The earlier grep command can be modified into ./proverif script.pv | egrep "RES|Err|War" for
more manageable output with notification of error/warnings, although a more complex command is re-
quired to read any associated messages. In this case, the command ./proverif script.pv | less can
be useful.

3.3.2 Example: ProVerif output for the handshake protocol

Executing the handshake protocol with ./proverif docs/ex handshake annotated.pv | grep "RES"

produces the following output:

RESULT inj−event ( termServer ( x 11 ) ) ==>
inj−event ( a c c ep t sC l i en t ( x 11 ) ) i s t rue .

RESULT event ( termCl ient ( x 168 , y 169 ) ) ==>
event ( a c c ep t sSe rve r ( x 168 , y 169 ) ) i s f a l s e .

RESULT not a t tacke r ( s [ ] ) i s f a l s e .

which informs us that authentication of A to B holds, but authentication of B to A and secrecy of s do
not hold.

Analyzing attack traces.

By inspecting the output more closely, we can reconstruct the attack. For example, let us consider the
query query attacker(s) which produces the following:



22 CHAPTER 3. USING PROVERIF

0 . . .
1 Process :
2 {1}new skA : skey ;
3 {2}new skB : sskey ;
4 {3} l et pkA : pkey = pk ( skA) in

5 {4}out ( c , pkA ) ;
6 {5} l et pkB : spkey = spk ( skB ) in

7 {6}out ( c , pkB ) ;
8 (
9 {7} !

10 {8}out ( c , pkA ) ;
11 {9} in ( c , x : b i t s t r i n g ) ;
12 {10} l et y : b i t s t r i n g = adec (x , skA) in

13 {11} l et (=pkB , k 8 : key ) = checks ign (y , pkB) in

14 {12}event ac c ep t sC l i en t ( k 8 ) ;
15 {13}out ( c , senc ( s , k 8 ) ) ;
16 {14}event termCl ient ( k 8 , pkA)
17 ) | (
18 {15} !
19 {16} in ( c , pkX : pkey ) ;
20 {17}new k 9 : key ;
21 {18}event accep t sSe rve r ( k 9 , pkX ) ;
22 {19}out ( c , aenc ( s i gn ( (pkB , k 9 ) , skB ) ,pkX ) ) ;
23 {20} in ( c , x 10 : b i t s t r i n g ) ;
24 {21} l et z : b i t s t r i n g = sdec ( x 10 , k 9 ) in

25 {22} i f pkX = pkA then

26 {23}event termServer ( k 9 )
27 )
28
29 . . .
30
31 −− Query not a t tacke r ( s [ ] )
32 Completing . . .
33 S ta r t i ng query not a t tacke r ( s [ ] )
34 goa l r eachab l e : a t t a cke r ( s [ ] )
35 Abbrev iat ions :
36 k 486 = k 9 [ pkX = pk ( sk 479 ) , ! 1 = @sid 477 ]
37
38 1 . The a t tacke r has some term sk 479 .
39 a t tacke r ( sk 479 ) .
40
41 2 . By 1 , the a t tacke r may know sk 479 .
42 Using the func t i on pk the a t tacke r may obta in pk ( sk 479 ) .
43 a t tacke r ( pk ( sk 479 ) ) .
44
45 3 . The message pk ( sk 479 ) that the a t tacke r may have by 2 may be r e c e i v ed
46 at input {16} .
47 So the message aenc ( s i gn ( ( spk ( skB [ ] ) , k 486 ) , skB [ ] ) , pk ( sk 479 ) )
48 may be sent to the a t tacke r at output {19} .
49 a t tacke r ( aenc ( s i gn ( ( spk ( skB [ ] ) , k 486 ) , skB [ ] ) , pk ( sk 479 ) ) ) .
50
51 4 . By 3 , the a t tacke r may know aenc ( s i gn ( ( spk ( skB [ ] ) , k 486 ) , skB [ ] ) , pk ( sk 479 ) ) .
52 By 1 , the a t tacke r may know sk 479 .
53 Using the func t i on adec the a t tacke r may obta in s i gn ( ( spk ( skB [ ] ) , k 486 ) , skB [ ] ) .
54 a t tacke r ( s i gn ( ( spk ( skB [ ] ) , k 486 ) , skB [ ] ) ) .
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55
56 5 . By 4 , the a t tacke r may know s i gn ( ( spk ( skB [ ] ) , k 486 ) , skB [ ] ) .
57 Using the func t i on getmess the a t tacke r may obta in ( spk ( skB [ ] ) , k 486 ) .
58 a t tacke r ( ( spk ( skB [ ] ) , k 486 ) ) .
59
60 6 . By 5 , the a t tacke r may know ( spk ( skB [ ] ) , k 486 ) .
61 Using the 1 th i nv e r s e o f f unc t i on 2−tup l e the a t tacke r may obta in k 486 .
62 a t tacke r ( k 486 ) .
63
64 7 . The message pk ( skA [ ] ) may be sent to the a t tacke r at output {4} .
65 a t tacke r ( pk ( skA [ ] ) ) .
66
67 8 . By 4 , the a t tacke r may know s i gn ( ( spk ( skB [ ] ) , k 486 ) , skB [ ] ) .
68 By 7 , the a t tacke r may know pk ( skA [ ] ) .
69 Using the func t i on aenc the a t tacke r may obta in aenc ( s i gn ( ( spk ( skB [ ] ) ,
70 k 486 ) , skB [ ] ) , pk ( skA [ ] ) ) .
71 a t tacke r ( aenc ( s i gn ( ( spk ( skB [ ] ) , k 486 ) , skB [ ] ) , pk ( skA [ ] ) ) ) .
72
73 9 . The message aenc ( s i gn ( ( spk ( skB [ ] ) , k 486 ) , skB [ ] ) , pk ( skA [ ] ) ) that the
74 a t tacke r may have by 8 may be r e c e i v ed at input {9} .
75 So the message senc ( s [ ] , k 486 ) may be sent to the a t tacke r at output {13} .
76 a t tacke r ( senc ( s [ ] , k 486 ) ) .
77
78 10 . By 9 , the a t tacke r may know senc ( s [ ] , k 486 ) .
79 By 6 , the a t tacke r may know k 486 .
80 Using the func t i on sdec the a t tacke r may obta in s [ ] .
81 a t tacke r ( s [ ] ) .
82
83
84 A more d e t a i l e d output o f the t r a c e s i s a v a i l a b l e with
85 set t r ac eD i sp l ay = long .
86
87 new skA c r e a t i n g skA 490 at {1}
88
89 new skB c r e a t i n g skB 491 at {2}
90
91 out ( c , pk ( skA 490 ) ) at {4}
92
93 out ( c , spk ( skB 491 ) ) at {6}
94
95 out ( c , pk ( skA 490 ) ) at {8} in copy a 489
96
97 in ( c , pk ( a 487 ) ) at {16} in copy a 488
98
99 new k 9 c r e a t i n g k 492 at {17} in copy a 488
100
101 event ( a c c ep t sSe rve r ( k 492 , pk ( a 487 ) ) ) at {18} in copy a 488
102
103 out ( c , aenc ( s i gn ( ( spk ( skB 491 ) , k 492 ) , skB 491 ) , pk ( a 487 ) ) ) at {19} in copy
104 a 488
105
106 in ( c , aenc ( s i gn ( ( spk ( skB 491 ) , k 492 ) , skB 491 ) , pk ( skA 490 ) ) ) at {9} in copy
107 a 489
108
109 event ( a c c ep t sC l i en t ( k 492 ) ) at {12} in copy a 489
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110
111 out ( c , senc ( s , k 492 ) ) at {13} in copy a 489
112
113 event ( termCl ient ( k 492 , pk ( skA 490 ) ) ) at {14} in copy a 489
114
115 The at tacke r has the message s .
116 A t ra c e has been found .
117 RESULT not a t tacke r ( s [ ] ) i s f a l s e .

ProVerif first outputs its internal representation of the process under consideration. Then, it handles
each query in turn. The output regarding the query query attacker(s) can be split into three main parts:

• From “Abbreviations” to “A more detailed ...”, a description of the derivation that leads to the
fact attacker(s).

• After “A more detailed ...” until “A trace has been found”, a description of the corresponding at-
tack trace.

• Finally, the “RESULT” line concludes: the property is false, there is an attack in which the
adversary gets s.

Let us first explain the derivation. It starts with a list of abbreviations: these abbreviations give names
to some subterms, in order to display them more briefly; such abbreviations are used for the internal
representation of names (keys, nonces, . . . ), which can sometimes be large terms that represent simple
atomic data. Next, the description of the derivation itself starts. It is a numbered list of steps, here
from 1 to 10. Each step corresponds to one action of the process or of the adversary. After an English
description of the step, ProVerif displays the fact that is derived thanks to this step, here attacker(M)
for some term M , meaning that the adversary has M .

• In step 1, the adversary chooses any value sk 479 in its knowledge (which it is going to use as its
secret key).

• In step 2, the adversary uses the knowledge of sk 479 obtained at step 1 (“By 1”) to compute the
corresponding public key pk(sk 479) using function pk.

• Step 3 is a step of the process. Input {16} (the numbers between braces refer to program points
also written between braces in the description of the process, so input {16} is the input of Line 19)
receives the message pk(sk 479) from the adversary, and output {19} (the one at Line 22) replies
with aenc(sign((spk(skB[]),k 486),skB []), pk(sk 479)). Note that k 486 is an abbreviation for
k 9[pkX = pk(sk 479),!1 = @sid 477], as listed at the beginning of the derivation. It designates
the key k 9 generated by the new at Line 20, in session @sid 477 (the number of the copy generated
by the replication at Line 18, designated by !1, that is, the first replication), when the key pkX
received by the input at Line 19 is pk(sk 479). ProVerif displays skB[] instead of skB when skB
is a name without argument (that is, a free name or a name chosen under no replication and no
input). In other words, the adversary starts a session of the server B with its own public key and
gets the corresponding message aenc(sign((spk(skB[]),k 486),skB []), pk(sk 479)).

• Steps 4 to 6 are again applications of functions by the adversary to perform its internal computa-
tions: the adversary decrypts the message aenc(sign((spk(skB[]),k 486),skB[]),pk(sk 479)) received
at step 3 and gets the signed message, so it obtains sign((spk(skB[]),k 486),skB[]) (step 4) and
k 486 (step 6).

• Step 7 uses a step of the process: by the output {4} (the one at Line 5), the adversary gets pk(skA).

• At step 8, the adversary reencrypts sign((spk(skB[]),k 506),skB[]) with pk(skA).

• Step 9 is again a step of the process: the adversary sends aenc(sign((spk(skB[]),k 486), skB []),
pk(skA[])) (obtained at step 8) to input {9} (at Line 11) and gets the reply senc(s [], k 486). In
other words, the adversary has obtained a correct message 2 for a session between A and B. It
sends this message to A who replies with senc(s [], k 486) as if it was running a session with B.
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• Finally, in step 10, the adversary decrypts senc(s [], k 486) since it has k 486 (by step 6), so it
obtains s [] .

As one can notice, this derivation corresponds exactly to the attack against the protocol outlined in
Figure 3.1. The display of the derivation can be tuned by some settings: set abbreviateDerivation = false
prevents the use of abbreviations for names and set explainDerivation = false switches to a display of
the derivation by explicit references to the Horn clauses used internally by ProVerif instead of relating
the derivation to the process. (See also Section 6.2.2 for details on these settings.)

Next, ProVerif reconstructs a trace in the semantics of the pi calculus, corresponding to this deriva-
tion. This trace is presented as a sequence of inputs and outputs on public channels and of events. The
internal reductions of the process are not displayed for brevity. (As mentioned in the output, it is possible
to obtain a more detailed display with the state of the process and the knowledge of the adversary at
each step by adding set traceDisplay = long. in your input file.) Each input, output, or event is followed
by its location in the process “at {n}”, which refers to the program point between braces in the process
displayed at the beginning. When the process is under replication, several copies of the process may be
generated. Each of these copies is named (by a name like “a n”), and ProVerif indicates in which copy
of the process the input, output, or event is executed. The name itself is unimportant, just the fact that
the copy is the same or different is important: the presence of different names of copies for the same
replication shows that several sessions are used. Let us explain the trace in the case of the handshake
protocol:

• The first two new correspond to the creation of secret keys.

• The first two outputs correspond to the outputs of public keys, at outputs {4} (Line 5) and {6}
(Line 7).

• The third output is the output of pkA at output {8} (Line 10), in a session of the client A named
a 489

• The next 3 steps correspond to a session of the server B (copy a 488) with the adversary: the
adversary sends its public key pk(a 487) at the input {16} (Line 19), the event acceptsServer is
executed (Line 21), and the message aenc(sign((spk(skB 491),k 492),skB 491),pk(a 487)) is sent
at output {19} (Line 22). These steps correspond to step 3 of the derivation above.

• The last 4 steps correspond to the end of the execution of the session a 489 of the client A. The
message aenc(sign((spk(skB 491),k 492),skB 491),pk(skA 490)) is received at input {9} (Line 11),
the event acceptsClient is executed (Line 14), the message senc(s ,k 492) is sent at output {13}
(Line 15), and finally the event termClient is executed (Line 16). These steps correspond to step
9 of the derivation above.

• Finally, the adversary obtains s [] by decryption of senc(s ,k 492).

This trace shows that there is an attack against the secrecy of s, it corresponds to the attack against the
protocol outlined in Figure 3.1.

For completeness, we present the complete formalization of the rectified protocol, which ProVerif can
successfully verify, below and in the file docs/ex handshake annotated fixed.pv.

1 (∗ Symmetric key encryp t ion ∗)
2
3 type key .
4 fun senc ( b i t s t r i n g , key ) : b i t s t r i n g .
5 reduc fora l l m: b i t s t r i n g , k : key ; sdec ( senc (m, k ) , k ) = m.
6
7
8 (∗ Asymmetric key encryp t ion ∗)
9

10 type skey .
11 type pkey .
12
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13 fun pk ( skey ) : pkey .
14 fun aenc ( b i t s t r i n g , pkey ) : b i t s t r i n g .
15
16 reduc fora l l m: b i t s t r i n g , sk : skey ; adec ( aenc (m, pk ( sk ) ) , sk ) = m.
17
18
19 (∗ D i g i t a l s i gna t u r e s ∗)
20
21 type s skey .
22 type spkey .
23
24 fun spk ( sskey ) : spkey .
25 fun s i gn ( b i t s t r i n g , s skey ) : b i t s t r i n g .
26
27 reduc fora l l m: b i t s t r i n g , s sk : s skey ; getmess ( s i gn (m, ssk ) ) = m.
28 reduc fora l l m: b i t s t r i n g , s sk : s skey ; checks ign ( s i gn (m, ssk ) , spk ( s sk ) ) = m.
29
30
31 free c : channel .
32
33 free s : b i t s t r i n g [ private ] .
34 query a t tacke r ( s ) .
35
36 event ac c ep t sC l i en t ( key ) .
37 event accep t sSe rve r ( key , pkey ) .
38 event termCl ient ( key , pkey ) .
39 event termServer ( key ) .
40
41 query x : key , y : pkey ; event ( termCl ient (x , y))==>event ( a c c ep t sSe rve r (x , y ) ) .
42 query x : key ; inj−event ( termServer ( x))==>inj−event ( a c c ep t sC l i en t ( x ) ) .
43
44 l et c l i en tA (pkA : pkey , skA : skey , pkB : spkey ) =
45 out ( c , pkA ) ;
46 in ( c , x : b i t s t r i n g ) ;
47 l et y = adec (x , skA) in

48 l et (=pkA,=pkB , k : key ) = checks ign (y , pkB) in

49 event ac c ep t sC l i en t ( k ) ;
50 out ( c , senc ( s , k ) ) ;
51 event termCl ient (k , pkA ) .
52
53 l et serverB (pkB : spkey , skB : sskey , pkA : pkey ) =
54 in ( c , pkX : pkey ) ;
55 new k : key ;
56 event accep t sSe rve r (k , pkX ) ;
57 out ( c , aenc ( s i gn ( (pkX , pkB , k ) , skB ) ,pkX ) ) ;
58 in ( c , x : b i t s t r i n g ) ;
59 l et z = sdec (x , k ) in

60 i f pkX = pkA then event termServer ( k ) .
61
62 process

63 new skA : skey ;
64 new skB : sskey ;
65 l et pkA = pk( skA) in out ( c , pkA ) ;
66 l et pkB = spk ( skB ) in out ( c , pkB ) ;
67 ( ( ! c l i en tA (pkA , skA , pkB) ) | ( ! serverB (pkB , skB , pkA) ) )



Chapter 4

Language features

In the previous chapter, the basic features of the language were introduced; we will now provide a more
complete coverage of the language features. These features will be used in Chapter 5 to study the
Needham-Schroeder public key protocol as a case study. More advanced features of the language will be
discussed in Chapter 6 and the complete input grammar is presented in Appendix A for reference; the
features presented in this chapter should be sufficient for most users.

4.1 Primitives and modeling features

In Section 3.1.1, we introduced the basic components of the declarations of the language and how to
model processes; this section will develop our earlier presentation.

4.1.1 Constants

A constant may be defined as a function of arity 0, for example “fun c() : t.” ProVerif also provides a
specific construct for constants:

const c : t .

where c is the name of the constant and t is its type.

4.1.2 Data constructors and type conversion

Constructors fun f(t1, . . . , tn) : t. may be declared as items of data by appending [data], that is,

fun f(t1, . . . , tn) : t [ data ] .

A constructor declared as data is similar to a tuple: the adversary can construct and decompose data
constructors. In other words, declaring a data constructor f as above implicitly declares n destructors
that map f(x1, . . . , xn) to xi, where i ∈ {1, . . . , n}. One can inverse a data constructor by pattern-
matching: the pattern f(T1, . . . , Tn) is added as pattern in the grammar of Figure 3.3. The type of
T1, . . . , Tn is the type of the arguments of f , so when Ti is a variable, its type can be omitted. For
example, with the declarations

type key .
type host .
fun keyhost ( key , host ) : b i t s t r i n g [ data ] .

we can write

l et keyhost (k , h ) = x in . . .

Constructors declared data cannot be declared private.
One application of data constructors is type conversion. As discussed in Section 3.1.1, the type

system occasionally makes it difficult to apply functions to arguments due to type mismatches. This can

27
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be overcome with type conversion. A type converter is simply a special type of data constructor defined
as follows:

fun tc(t) : t′ [ typeConverter ] .

where the type converter tc takes input of type t and returns a result of type t′. Observe that, since the
constructor is a data constructor, the adversary may recover term M from the term tc(M). Intuitively,
the keyword typeConverter means that the function is the identity function, and so has no effect
except changing the type. By default, types are used for typechecking the protocol but during protocol
verification, ProVerif ignores types. The typeConverter functions are thus removed. (This behavior
allows ProVerif to detect type flaw attacks, in which the attacker mixes data of different types. This
behavior can be changed by the setting set ignoreTypes = ... as discussed in Section 6.2.2.)

The reverse type conversion, from t′ to t, should be performed by pattern-matching:

l et tc(x) = M in . . .

where M is of type t′ and x is of type t. This construct is allowed since type converters are data
constructors. When one defines a type converter tc(t) : t′ from type t to t′, all elements of type t can be
converted to type t′, but the only elements of type t′ that can be converted to type t are the elements
of the form tc(M). Hence, for instance, it is reasonable to define a type converter from a type key
representing 128-bit keys to type bitstring , but not in the other direction, since all 128-bit keys are
bitstrings but only some bitstrings are 128-bit keys.

4.1.3 Enriched terms

For greater flexibility, we redefine our grammar for terms (Figure 3.2) to include restrictions, conditionals,
and term evaluations as presented in Figure 4.1. The behavior of enriched terms will now be discussed.
Names, variables, tuples, and constructor/destructor application are defined as standard. The term
new a : t; M constructs a new name a of type t and then evaluates the enriched term M . The term
if M then N else N ′ is defined as N if the condition M is equal to true and N ′ when M does not fail
but is not equal to true. If M fails, or the else branch is omitted and M is not equal to true, then the
term if M then N else N ′ fails (like when no rewrite rule matches in the evaluation of a destructor).
Similarly, let T = M in N else N ′ is defined as N if the pattern T is matched by M , and the variables
of T are bound by this pattern-matching. As before, if the pattern is not matched, then the enriched
term is defined as N ′; and when the else branch is omitted, the term fails. The use of enriched terms
will be demonstrated in the Needham-Schroeder case study in Section 5.3.

Figure 4.1 Enriched terms grammar

M,N ::= enriched terms
a, b, c, k,m, n, s names
x, y, z variables
(M1, . . . ,Mj) tuple
h(M1, . . . ,Mj) constructor/destructor application
M = N term equality
M <> N term inequality
M && M conjunction
M || M disjunction
not(M) negation
new a : t; M name restriction
if M then N else N ′ conditional
let T = M in N else N ′ term evaluation

ProVerif ’s internal encoding for enriched terms. Enriched terms are a convenient tool for the end
user; internally, ProVerif handles such constructs by encoding them: the conditional if M then N else N ′

is encoded as a special destructor also displayed as if M then N else N ′; the restriction new a : t; M
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is expanded into a process; the term evaluation let T = M in N else N ′ is encoded as a mix of processes
and special destructors. As an example, let us consider the following process.

1 free c : channel .
2
3 free A: b i t s t r i n g .
4 free B: b i t s t r i n g .
5
6 process

7 in ( c , ( x : b i t s t r i n g , y : b i t s t r i n g ) ) ;
8 i f x = A | | x = B then

9 l et z = ( i f y = A then new n : b i t s t r i n g ; (x , n ) else (x , y ) ) in

10 out ( c , z )

The process takes as input a pair of bitstrings x,y and checks that either x=A or x=B. The term
evaluation let z = (if y = A then new n:bitstring; (x,n) else (x,y)) in is defined using the enriched
term if y = A then new n:bitstring; (x,n) else (x,y) which evaluates to the tuple (x,n) where n is a
new name of type bitstring if y=A; or (x,y) otherwise. (Note that brackets have only been added for
readability.) Internally, ProVerif encodes the above main process as:

1 in ( c , ( x : b i t s t r i n g , y : b i t s t r i n g ) ) ;
2 i f ( ( x = A) | | ( x = B) ) then

3 new n : b i t s t r i n g ;
4 l et z : b i t s t r i n g = ( i f ( y = A) then (x , n ) else (x , y ) ) in

5 out ( c , z )

This encoding sometimes has visible consequences on the behavior of ProVerif. Note that this process
was obtained by beautifying the output produced by ProVerif (see Section 3.3 for details on ProVerif
output).

4.1.4 Tables and key distribution

ProVerif provides tables (or databases) for persistent storage. Tables must be specified in the declarations
in the following form:

table d(t1, . . . , tn) .

where d is the name of the table which takes records of type t1, . . . , tn. Processes may populate and access
tables, but deletion is forbidden. Note that tables are not accessible by the adversary. Accordingly, the
grammar for processes is extended:

insert d(M1, . . . ,Mn); P insert record
get d(T1, . . . , Tn) in P else Q read record

The process insert d(M1, . . . ,Mn); P inserts the record M1, . . . ,Mn into the table d and then executes
P ; when P is the 0 process, it may be omitted. The process get d(T1, . . . , Tn) in P else Q attempts
to retrieve a record in accordance with patterns T1, . . . , Tn. When several records can be matched,
one possibility is chosen (but ProVerif considers all possibilities when reasoning) and the process P
is evaluated with the free variables of T1, . . . , Tn bound inside P . When no such record is found, the
process Q is executed. The else branch can be omitted; in this case, when no suitable record is found, the
process blocks. The get process also has a richer form get d(T1, . . . , Tn) suchthat M in P else Q; in
this case, the retrieved record is required to satisfy the condition M in addition to matching the patterns
T1, . . . , Tn. The use of tables for key management will be demonstrated in the Needham-Schroeder public
key protocol case study (Chapter 5).

As a side remark, tables can be encoded using private channels. We provide a specific construct since
it is frequently used, it can be analyzed precisely by ProVerif (more precisely than some other uses of
private channels), and it is probably easier to understand for users that are not used to the pi calculus.
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4.1.5 Phases

Many protocols can be broken into phases, and their security properties can be formulated in terms of
these phases. Typically, for instance, if a protocol discloses a session key after the conclusion of a session,
then the secrecy of the data exchanged during that session may be compromised but not its authenticity.
To enable modeling of protocols with several phases the syntax for processes is supplemented with a
phase prefix phase t; P, where t is a positive integer. Observe that all processes are under phase 0 by
default and hence the instruction phase 0 is not allowed. Intuitively, t represents a global clock, and the
process phase t; P is active only during phase t. A process with phases is executed as follows. First, all
instructions under phase 0 are executed, that is, all instructions not under phase i ≥ 1. Then, during
a stage transition from phase 0 to phase 1, all processes which have not yet reached phase i ≥ 1 are
discarded and the process may then execute instructions under phase 1, but not under phase i ≥ 2. More
generally, when changing from phase n to phase n + 1, all processes which have not reached a phase
i ≥ n + 1 are discarded and instructions under phase n + 1, but not for phase i ≥ n + 2, are executed.
It follows from our description that it is not necessary for all instructions of a particular phase to be
executed prior to phase transition. Moreover, processes may communicate only if they are under the
same phase.

Phases can be used, for example, to prove forward secrecy properties: the goal is to show that, even if
some participants get corrupted (so their secret keys are leaked to the adversary), the secrets exchanged
in sessions that took place before the corruption are preserved. Corruption can be modeled in ProVerif
by outputting the secret keys of the corrupted participants in phase 1; the secrets of the sessions run in
phase 0 should be preserved. This is done for the fixed handshake protocol of the previous chapter in
the following example (file docs/ex handshake forward secrecy skB.pv):

1 free c : channel .
2
3 free s : b i t s t r i n g [ private ] .
4 query a t tacke r ( s ) .
5
6 l et c l i en tA (pkA : pkey , skA : skey , pkB : spkey ) =
7 out ( c , pkA ) ;
8 in ( c , x : b i t s t r i n g ) ;
9 l et y = adec (x , skA) in

10 l et (=pkA,=pkB , k : key ) = checks ign (y , pkB) in

11 out ( c , senc ( s , k ) ) .
12
13 l et serverB (pkB : spkey , skB : sskey , pkA : pkey ) =
14 in ( c , pkX : pkey ) ;
15 new k : key ;
16 out ( c , aenc ( s i gn ( (pkX , pkB , k ) , skB ) ,pkX ) ) ;
17 in ( c , x : b i t s t r i n g ) ;
18 l et z = sdec (x , k ) .
19
20 process

21 new skA : skey ;
22 new skB : sskey ;
23 l et pkA = pk( skA) in out ( c , pkA ) ;
24 l et pkB = spk ( skB ) in out ( c , pkB ) ;
25 ( ( ! c l i en tA (pkA , skA , pkB) ) | ( ! serverB (pkB , skB , pkA) ) |
26 phase 1 ; out ( c , skB ) )

The secret key skB of the server B is leaked in phase 1 (last line). The secrecy of s is still preserved in
this example: the adversary can impersonate B in phase 1, but cannot decrypt messages of sessions run
in phase 0. (Note that one could hope for a stronger model: this model does not consider sessions that
are running precisely when the key is leaked. While the adversary can simulate B in phase 1, the model
above does not run A in phase 1; one could easily add a model of A in phase 1 if desired.) In contrast, if
the secret key of the client A is leaked, then the secrecy of s is not preserved: the adversary can decrypt
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the messages of previous sessions by using skA, and thus obtain s.

4.1.6 Synchronization

The synchronization command sync t introduces a global synchronization [BS16], which has some simi-
larity with phases. The global synchronizations must be executed in increasing order. The process waits
until all sync t commands are reached before executing the synchronization t. More precisely, assuming
t is the smallest synchronization number that occurs in the initial process and has not been executed
yet, if the initial process contains k commands sync t, then the process waits until it reaches exactly
k commands sync t, then it executes the synchronization t and continues after the sync t commands.
So, in contrast to phases, processes are never discarded by synchronization, but the process may block
in case some synchronizations cannot be reached or are discarded for instance by a test that fails above
them.

The synchronization number must be a positive integer. Synchronizations sync t cannot occur under
replications. Synchronizations cannot be used with phases. Synchronizations are implemented in ProVerif
by translating them into outputs and inputs; the translated process is displayed by ProVerif. Further
discussion of synchronization with an example can be found in Section 4.3.2, page 48.

4.2 Further cryptographic operators

In Section 3.1.1, we introduced how to model the relationships between cryptographic operations and
in Section 3.1.2 we considered the formalization of basic cryptographic primitives needed to model the
handshake protocol. This section will consider more advanced formalisms and provide a small library of
cryptographic primitives.

4.2.1 Extended destructors

We introduce an extended way to define the behaviour of destructors [CB13].

fun g(t1, . . . , tk) : t
reduc fora l l x1,1 : t1,1, . . . , x1,n1

: t1,n1
; g(M1,1, . . . ,M1,k) = M1,0

otherwise . . .
otherwise fora l l xm,1 : tm,1, . . . , xm,nm

: tm,nm
; g(Mm,1, . . . ,Mm,k) = Mm,0 .

This declaration should be seen as a sequence of rewrite rules rather than as a set of rewrite rules.
Thus, when the term g(N1, . . . , Nn) is encountered, ProVerif will try to apply the first rewrite rule
of the sequence, forall x1,1 : t1,1, . . . , x1,n1

: t1,n1
; g(M1,1, . . . ,M1,k) = M1,0. If this rewrite rule is

applicable, then the term g(N1, . . . , Nn) is reduced according to that rewrite rule. Otherwise, ProVerif
tries the second rewrite rule of the sequence and so on. If no rule can be applied, the destructor fails.
This definition of destructors allows one to define new destructors that could not be defined with the
definition of Section 3.1.1.

1 fun eq ( b i t s t r i n g , b i t s t r i n g ) : bool
2 reduc fora l l x : b i t s t r i n g ; eq (x , x ) = true
3 otherwise fora l l x : b i t s t r i n g , y : b i t s t r i n g ; eq (x , y ) = f a l s e .

With this definition, eq(M,N) can be reduced to false only ifM andN are different modulo the equational
theory.

As previously mentioned, when no rule can be applied, the destructor fails. However, this formalism
does not allow a destructor to succeed when one of its arguments fails. To lift this restriction, we allow
to represent the case of failure by the special value fail .

8 fun t e s t ( bool , b i t s t r i n g , b i t s t r i n g ) : b i t s t r i n g
9 reduc

10 f o ra l l x : b i t s t r i n g , y : b i t s t r i n g ; t e s t ( true , x , y ) = x
11 otherwise fora l l c : bool , x : b i t s t r i n g , y : b i t s t r i n g ; t e s t ( c , x , y ) = y
12 otherwise fora l l x : b i t s t r i n g , y : b i t s t r i n g ; t e s t ( f a i l , x , y ) = y .
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In the previous example, the function test returns the third argument even when the first argument fails.
A variable x of type t can be declared as a possible failure by the syntax: x:t or fail . It indicates that
x can be any message or even the special value fail . Relying on this new declaration of variables, the
destructor test could have been defined as follows:

14 fun t e s t ( bool , b i t s t r i n g , b i t s t r i n g ) : b i t s t r i n g
15 reduc

16 f o ra l l x : b i t s t r i n g , y : b i t s t r i n g ; t e s t ( true , x , y ) = x
17 otherwise fora l l c : bool or fa i l , x : b i t s t r i n g , y : b i t s t r i n g ;
18 t e s t ( c , x , y ) = y .

A variant of this test destructor is the following one:

20 fun t e s t ’ ( bool , b i t s t r i n g , b i t s t r i n g ) : b i t s t r i n g
21 reduc

22 f o ra l l x : b i t s t r i n g or fa i l , y : b i t s t r i n g or f a i l ; t e s t ’ ( true , x , y ) = x
23 otherwise fora l l c : bool , x : b i t s t r i n g or fa i l , y : b i t s t r i n g or f a i l ;
24 t e s t ’ ( c , x , y ) = y .

This destructor returns its second argument when the first argument c is true, its third argument when
the first argument c does not fail but is not true, and fails otherwise. With this definition, when the
first argument is true, test ’ returns the second argument even when the third argument fails (which
models that the third argument does not need to be evaluated in this case). Symmetrically, when the
first argument does not fail but is not true, test ’ returns the third argument even when the second
argument fails. In contrast, the previous destructor test fails when its second or third arguments fail.

It is also possible to transform the special failure value fail into a non-failure value c0 by a destructor:

27 const c0 : b i t s t r i n g .
28 fun c a t c h f a i l ( b i t s t r i n g ) : b i t s t r i n g
29 reduc

30 f o ra l l x : b i t s t r i n g ; c a t c h f a i l ( x ) = x
31 otherwise c a t c h f a i l ( f a i l ) = c0 .

Such a destructor is used internally by ProVerif.

4.2.2 Equations

Certain cryptographic primitives, such as the Diffie-Hellman key agreement, cannot be encoded as de-
structors, because they require algebraic relations between terms. Accordingly, ProVerif provides an
alternative model for cryptographic primitives, namely equations. The relationships between construc-
tors are captured using equations of the form

equation fora l l x1 : t1, . . . , xn : tn ; M = N .

where M , N are terms built from the application of (defined) constructor symbols to the variables
x1, . . . , xn of type t1, . . . , tn. Note that when no variables are required (that is, when terms M,N are
constants) forall x1 : t1, . . . , xn : tn; may be omitted.

More generally, one can declare several equations at once, as follows:

equation fora l l x1,1 : t1,1, . . . , x1,n1
: t1,n1

; M1 = N1 ;
. . .
f o ra l l xm,1 : tm,1, . . . , xm,nm

: tm,nm
; Mm = Nm option .

where option can either be empty, [convergent], or [ linear ]. When an option [convergent] or [ linear ]
is present, it means that the group of equations is convergent (the equations, oriented from left to right,
form a convergent rewrite system) or linear (each variable occurs at most once in the left-hand and
once in the right-hand side of each equation), respectively. In this case, this group of equations must
use function symbols that appear in no other equation. ProVerif checks that the convergent or linear
option is correct. However, in case ProVerif cannot prove termination of the rewrite system associated
to equations declared [convergent], it just displays a warning, and continues assuming that the rewrite
system terminates. Indeed, ProVerif’s algorithm for proving termination is obviously not complete,
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so the rewrite system may terminate and ProVerif not be able to prove it. The main interest of the
[convergent] option is then to bypass the verification of termination of the rewrite system.

Performance. It should be noted that destructors are more efficient than equations. The use of
destructors is therefore advocated where possible.

Limitations. ProVerif does not support all equations. It must be possible to split the set of equations
into two kinds of equations that do not share constructor symbols: convergent equations and linear
equations. Convergent equations are equations that, when oriented from left to right, form a convergent
(that is, terminating and confluent) rewriting system. Linear equations are equations such that each
variable occurs at most once in the left-hand side and at most once in the right-hand side. When
ProVerif cannot split the equations into convergent equations and linear equations, an error message is
displayed.

Moreover, even when the equations can be split as above, it may happen that the pre-treatment of
equations by ProVerif does not terminate. Essentially, ProVerif computes rewrite rules that encode the
equations and it requires that, when M1, . . . ,Mn are in normal form, the normal form of f(M1, . . . ,Mn)
can be computed by a single rewrite step. For some equations, this constraint implies generating an
infinite number of rewrite rules, so in this case ProVerif does not terminate. For instance, associativity
cannot be handled by ProVerif for this reason, which prevents the modeling of primitives such as XOR
(exclusive or) or groups. Another example that leads to non-termination for the same reason is the
equation f(g(x)) = g(f(x)). In the obtained rewrite rules, all variables that occur in the right-hand side
must also occur in the left-hand side.

It is also worth noting that, because ProVerif orients equations from left to right when it builds the
rewrite system, the orientation in which the equations are written may influence the success or failure of
ProVerif (even if the semantics of the equation obviously does not depend on the orientation). Informally,
the equations should be written with the most complex term on the left and the simplest one on the
right.

Even with these limitations, many practical primitives can be modeled by equations in ProVerif, as
illustrated below.

Diffie-Hellman key agreement. The Diffie-Hellman key agreement relies on modular exponentiation
in a cyclic group G of prime order q; let g be a generator of G. A principal A chooses a random exponent
a in Z

∗

q , and sends ga to B. Similarly, B chooses a random exponent b, and sends gb to A. Then A

computes (gb)a and B computes (ga)b. These two keys are equal, since (gb)a = (ga)b, and cannot be
obtained by a passive adversary who has ga and gb but neither a nor b.

We model the Diffie-Hellman key agreement as follows:

1 type G.
2 type exponent .
3
4 const g : G [ data ] .
5 fun exp (G, exponent ) : G.
6
7 equation fora l l x : exponent , y : exponent ; exp ( exp (g , x ) , y ) = exp ( exp (g , y ) , x ) .

The elements of G have type G, the exponents have type exponent, g is the generator g, and exp models
modular exponentiation exp(x,y) = xy. The equation means that (gx)y = (gy)x.

This model of Diffie-Hellman key agreement is limited in that it just takes into account the equation
needed for the protocol to work, while there exist other equations, coming from the multiplicative group
Z
∗

q . A more complete model is out of scope of the current treatment of equations in ProVerif, because it
requires an associative function symbol, but extensions have been proposed to handle it [KT09].

Symmetric encryption. We model a symmetric encryption scheme for which one cannot distinguish
whether decryption succeeds or not. We consider the binary constructors senc and sdec, the arguments
of which are of types bitstring and key.
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1 type key .
2
3 fun senc ( b i t s t r i n g , key ) : b i t s t r i n g .
4 fun sdec ( b i t s t r i n g , key ) : b i t s t r i n g .

To model the properties of decryption, we introduce the equations:

5 equation fora l l m: b i t s t r i n g , k : key ; sdec ( senc (m, k ) , k ) = m.
6 equation fora l l m: b i t s t r i n g , k : key ; senc ( sdec (m, k ) , k ) = m.

where k represents the symmetric key and m represents the message. The first equation is standard: it
expresses that, by decrypting the ciphertext with the correct key, one gets the cleartext. The second
equation might seem more surprising. It implies that encryption and decryption are two inverse bijections;
it is satisfied by block ciphers, for instance. One can also note that this equation is necessary to make
sure that one cannot distinguish whether decryption succeeds or not: without this equation, sdec(M,k)
succeeds if and only if senc(sdec(M,k),k) = M.

4.2.3 Function macros

Sometimes, terms that consist of more than just a constructor or destructor application are repeated
many times. ProVerif provides a macro mechanism in order to define a function symbol that represents
that term and avoid the repetition. Function macros are defined by the following declaration:

letfun f(x1 : t1 [ or f a i l ] , . . . , xj : tj [ or f a i l ] ) = M .

where the macro f takes arguments x1, . . . , xj of types t1, . . . , tj and evaluates to the enriched term M
(see Figure 4.1). The type of the function macro f is inferred from the type of M . The optional or fail

after the type of each argument allows the user to control the behavior of the function macro in case
some of its arguments fail:

• If or fail is absent and the argument fails, the function macro fails as well. For instance, with the
definitions

fun h ( ) : t
reduc h ( ) = f a i l .

letfun f ( x : t ) =
l et y = x in c0 else c1 .

h() is fail and f(h()) returns fail and f never returns c1.

• If or fail is present and the argument fails, the failure value is passed to the function macro, which
may for instance catch it and return some non-failure result. For instance, with the same definition
of h as above and the following definition of f

letfun f ( x : t or f a i l ) =
l et y = x in c0 else c1 .

f(h()) returns c1.

Function macros can be used as constructors/destructors h in terms (see Figure 4.1). The applicability
of function macros will be demonstrated by the following example.

Probabilistic asymmetric encryption. Recall that asymmetric cryptography makes use of the
unary constructor pk, which takes an argument of type skey (private key) and returns a pkey (public
key). Since the constructors of ProVerif always represent deterministic functions, we model probabilistic
encryption by considering a constructor that takes the random coins used inside the encryption algorithm
as an additional argument, so probabilistic asymmetric encryption is modeled by a ternary constructor
internal aenc, which takes as arguments a message of type bitstring, a public key of type pkey, and ran-
dom coins of type coins. When encryption is used properly, the random coins must be freshly chosen at
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each encryption, so that the encryption of x under y is modeled by new r: coins; internal aenc(x,y,r).
In order to avoid writing this code at each encryption, we can define a function macro aenc, which
expands to this code, as shown below. Decryption is defined in the usual way.

type skey .
type pkey .
type co in s .

fun pk ( skey ) : pkey .
fun i n t e r n a l a e n c ( b i t s t r i n g , pkey , c o i n s ) : b i t s t r i n g .

reduc fora l l m: b i t s t r i n g , k : skey , r : c o i n s ;
adec ( i n t e r n a l a e n c (m, pk (k ) , r ) , k ) =m.

letfun aenc (x : b i t s t r i n g , y : pkey ) = new r : c o i n s ; i n t e r n a l a e n c (x , y , r ) .

Observe that the use of probabilistic cryptography increases the complexity of the model due to the
additional names introduced. This may slow down the analysis process.

4.2.4 Process macros with fail

Much like function macros above, process macros may also be declared with arguments of type t or fail:

l et p(x1 : t1 [ or f a i l ] , . . . , xj : tj [ or f a i l ] ) = P .

The optional or fail after the type of each argument allows the user to control the behavior of the
process in case some of its arguments fail:

• If or fail is absent and the argument fails, the process blocks. For instance, with the definitions

fun h ( ) : t
reduc h ( ) = f a i l .

l et p(x : t ) =
l et y = x in out ( c , c0 ) else out ( c , c1 ) .

p(h()) does nothing and p never outputs c1.

• If or fail is present and the argument fails, the failure value is passed to the process, which may
for instance catch it and continue to run. For instance, with the same definition of h as above and
the following definition of p

l et p(x : t or f a i l ) =
l et y = x in out ( c , c0 ) else out ( c , c1 ) .

p(h()) outputs c1 on channel c.

4.2.5 Suitable formalizations of cryptographic primitives

In this section, we present various formalizations of basic cryptographic primitives, and relate them to
the assumptions on these primitives. We would like to stress that we make no computational soundness
claims : ProVerif relies on the symbolic, Dolev-Yao model of cryptography; its results do not apply to the
computational model, at least not directly. If you want to obtain proofs of protocols in the computational
model, you should use other tools, for instance CryptoVerif (http://cryptoverif.inria.fr). Still,
even in the symbolic model, some formalizations correspond better than others to certain assumptions
on primitives. The goal of this section is to help you find the best formalization for your primitives.
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Hash functions. A hash function is represented as a unary constructor h with no associated destructor
or equations. The constructor takes as input, and returns, a bitstring. Accordingly, we define:

fun h( b i t s t r i n g ) : b i t s t r i n g .

The absence of any associated destructor or equational theory captures pre-image resistance, second pre-
image resistance and collision resistance properties of cryptographic hash functions. In fact, far stronger
properties are ensured: this model of hash functions is close to the random oracle model.

Symmetric encryption. The most basic formalization of symmetric encryption is the one based on
decryption as a destructor, given in Section 3.1.2. However, formalizations that are closer to practical
cryptographic schemes are as follows:

1. For block ciphers, which are deterministic, bijective encryption schemes, a better formalization is
the one based on equations and given in Section 4.2.2.

2. Other symmetric encryption schemes are probabilistic. This can be formalized in a way similar to
what was presented for probabilistic public-key encryption in Section 4.2.3.

type key .
type co in s .

fun i n t e r n a l s e n c ( b i t s t r i n g , key , c o i n s ) : b i t s t r i n g .

reduc fora l l m: b i t s t r i n g , k : key , r : c o i n s ;
sdec ( i n t e r n a l s e n c (m, k , r ) , k ) = m.

letfun senc ( x : b i t s t r i n g , y : key ) = new r : c o i n s ; i n t e r n a l s e n c (x , y , r ) .

As shown in [CHW06], for protocols that do not test equality of ciphertexts, for secrecy and authen-
tication, one can use the simpler, deterministic model of Section 3.1.2. However, for observational
equivalence properties, or for protocols that test equality of ciphertexts, using the probabilistic
model does make a difference.

Note that these encryption schemes generally leak the length of the cleartext. (The length of
the ciphertext depends on the length of the cleartext.) This is not taken into account in this
formalization, and generally difficult to take into account in formal protocol provers, because it
requires arithmetic manipulations. For some protocols, one can argue that this is not a problem,
for example when the length of the messages is fixed in the protocol, so it is a priori known to
the adversary. Block ciphers are not concerned by this comment since they encrypt data of fixed
length.

Also note that, in this formalization, encryption is authenticated. In this respect, this formal-
ization is close to IND-CPA and INT-CTXT symmetric encryption. So it does not make sense
to add a MAC (message authentication code) to such an encryption, as one often does to obtain
authenticated encryption from unauthenticated encryption: the MAC is already included in the
encryption here. If desired, it is sometimes possible to model malleability properties of some en-
cryption schemes, by adding the appropriate equations. However, it is difficult to model general
unauthenticated encryption (IND-CPA encryption) in formal protocol provers.

In this formalization, encryption hides the encryption key. If one wants to model an encryption
scheme that does not conceal the key, one can add the following destructor [ABCL09]:

reduc fora l l m: b i t s t r i n g , k : key , r : co ins , m’ : b i t s t r i n g , r ’ : c o i n s ;
samekey ( i n t e r n a l s e n c (m, k , r ) , i n t e r n a l s e n c (m’ , k , r ’ ) ) = true .

This destructor allows the adversary to test whether two ciphertexts have been built with the same
key. The presence of such a destructor makes no difference for reachability properties (secrecy, cor-
respondences) since it does not enable the adversary to construct terms that it could not construct
otherwise. However, it does make a difference for observational equivalence properties. (Note that
it would obviously be a serious mistake to give out the encryption key to the adversary, in order
to model a scheme that does not conceal the key.)
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Asymmetric encryption. A basic, deterministic model of asymmetric encryption has been given in
Section 3.1.2. However, cryptographically secure asymmetric encryption schemes must be probabilistic.
So a better model for asymmetric encryption is the probabilistic one given in Section 4.2.3. As shown
in [CHW06], for protocols that do not test equality of ciphertexts, for secrecy and authentication, one can
use the simpler, deterministic model of Section 3.1.2. However, for observational equivalence properties,
or for protocols that test equality of ciphertexts, using the probabilistic model does make a difference.

It is also possible to model that the encryption leaks the key. Since the encryption key is public, we
can do this simply by giving the key to the adversary:

reduc fora l l m: b i t s t r i n g , pk : pkey , r : c o i n s ; getkey ( i n t e r n a l a e n c (m, pk , r ) ) = pk .

The previous models consider a unary constructor pk that computes the public key from the secret key.
An alternative (and equivalent) formalism for asymmetric encryption considers the unary constructors
pk’, sk’ which take arguments of type seed’, to capture the notion of constructing a key pair from some
seed.

type seed ’ .
type pkey ’ .
type skey ’ .

fun pk ’ ( seed ’ ) : pkey ’ .
fun sk ’ ( seed ’ ) : skey ’ .

fun aenc ’ ( b i t s t r i n g , pkey ’ ) : b i t s t r i n g .
reduc fora l l m: b i t s t r i n g , k : seed ’ ; adec ’ ( aenc ’ (m, pk ’ ( k ) ) , sk ’ ( k ) ) = m.

The addition of single quotes (’) is only for distinction between the different formalizations. We have
given here the deterministic version, a probabilistic version is obviously also possible.

Digital signatures. The Handbook of Applied Cryptography defines four different classes of digital
signature schemes [MvOV96, Figure 11.1], we explain how to model these four classes. Deterministic
signatures with message recovery were already modeled in Section 3.1.2. Probabilistic signatures with
message recovery can be modeled as follows, using the same ideas as for asymmetric encryption:

type s skey .
type spkey .
type s c o i n s .

fun spk ( sskey ) : spkey .
fun i n t e r n a l s i g n ( b i t s t r i n g , sskey , s c o i n s ) : b i t s t r i n g .
reduc fora l l m: b i t s t r i n g , k : sskey , r : s c o i n s ;

getmess ( i n t e r n a l s i g n (m, k , r ) ) = m.
reduc fora l l m: b i t s t r i n g , k : sskey , r : s c o i n s ;

checks ign ( i n t e r n a l s i g n (m, k , r ) , spk (k ) ) = m.

letfun s i gn (m: b i t s t r i n g , k : s skey ) = new r : s c o i n s ; i n t e r n a l s i g n (m, k , r ) .

There also exist signatures that do not allow message recovery, named digital signatures with appendix
in [MvOV96]. Here is a model of such signatures in the deterministic case:

type sskey ’ .
type spkey ’ .

fun spk ’ ( sskey ’ ) : spkey ’ .
fun s ign ’ ( b i t s t r i n g , sskey ’ ) : b i t s t r i n g .
reduc fora l l m: b i t s t r i n g , k : sskey ’ ; checks ign ’ ( s ign ’ (m, k ) , spk ’ ( k ) ,m) = true .

For such signatures, the message must be given when verifying the signature, and signature verification
just returns true when it succeeds. Note that these signatures hide the message as if it were encrypted;
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this is often a stronger property than desired. Probabilistic signatures with appendix can also be modeled
by combining the models given above.

It is also possible to model that the signature leaks the key. Obviously, we must not leak the secret
key, but we can leak the corresponding public key using the following destructor:

reduc fora l l m: b i t s t r i n g , k : sskey , r : s c o i n s ;
getkey ( i n t e r n a l s i g n (m, k , r ) ) = spk (k ) .

This model is for probabilistic signatures; it can be straightforwardly adapted to deterministic signatures.
Finally, as for asymmetric encryption, we can also consider unary constructors pk’, sk’ which take

arguments of type seed’, to capture the notion of constructing a key pair from some seed. We leave the
construction of these models to the reader.

Message authentication codes. Message authentication codes (MACs) can be formalized by a con-
structor with no associated destructor or equation, much like a keyed hash function:

type mkey .

fun mac( b i t s t r i n g , mkey ) : b i t s t r i n g .

This model is very strong: it considers the MAC essentially as a random oracle, which is much stronger
than the typical computational assumption on MACs (unforgeability). We also remind the reader that
using MACs in conjunction with symmetric encryption is generally useless in ProVerif since the basic
encryption is already authenticated.

Other primitives. A simple model of Diffie-Hellman key agreements is given in Section 4.2.2, bit-
commitment and blind signatures are formalized in [KR05, DKR09], and non-interactive zero-knowledge
proofs are formalized in [BMU08]. Since defining correct models for cryptographic primitives is difficult,
we recommend reusing existing definitions, such as the ones given in this manual.

4.3 Further security properties

In Section 3.2, the basic security properties that ProVerif is able to prove were introduced. In this section,
we generalize our earlier presentation and introduce further security properties. Advanced properties are
listed in Section 6.1.

ProVerif is sound, but not complete. ProVerif’s ability to reason with reachability, correspon-
dences, and observational equivalence is sound (sometimes called correct); that is, when ProVerif says
that a property is satisfied, then the model really does guarantee that property. However, ProVerif
is not complete; that is, ProVerif may not be capable of proving a property that holds. Sources of
incompleteness are detailed in Section 6.3.4.

4.3.1 Complex correspondence assertions, secrecy, and events

In Section 3.2.2, we demonstrated how to model correspondence assertions of the form: “if an event e
has been executed, then event e′ has been previously executed.” We will now generalize these assertions
considerably. The syntax for correspondence assertions is revised as follows:

query x1 : t1, . . . , xn : tn ; q .

where the query q is constructed by the grammar presented in Figure 4.2, such that all terms appearing
in q are built by the application of constructors to the variables x1, . . . , xn of types t1, . . . , tn and all
events appearing in q have been declared with the appropriate type. Equalities and inequalities are not
allowed before an arrow ==> or alone as single fact in the query. If q or a subquery of q is of the form
F ==> H and H contains an injective event, then F must be an injective event. If F is a non-injective
event, it is automatically transformed into an injective event by ProVerif. We will explain the meaning
of these queries through many examples.
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Figure 4.2 Grammar for correspondence assertions

q ::= query
F fact
F ==> H correspondence

H ::= hypothesis
F fact
H && H conjunction
H || H disjunction
(F ==> H) nested correspondence

F ::= fact
attacker(M) the adversary has M (in any phase)
attacker(M) phase n the adversary has M in phase n
mess(N,M) M is sent on channel N (in the last phase)
mess(N,M) phase n M is sent on channel N in phase n
table(d(M1, . . . ,Mn)) the element M1, . . . ,Mn is in table d (in any phase)
table(d(M1, . . . ,Mn)) phase n the element M1, . . . ,Mn is in table d in phase n
event(e(M1, . . . ,Mn)) non-injective event
inj−event(e(M1, . . . ,Mn)) injective event
M=N equality
M<>N inequality

Reachability

This corresponds to the case in which the query q is just a fact F . Such a query is in fact an abbreviation
for F ==> false, that is, not F . In other words, ProVerif tests whether F holds, but returns the following
results:

• “RESULT not F is true.” when F never holds.

• “RESULT not F is false.” when there exists a trace in which F holds, and ProVerif displays such
a trace.

• “RESULT not F cannot be proved.” when ProVerif cannot decide either way.

For instance, we have seen query attacker(M) before: this query tests the secrecy of the term M and
ProVerif returns “RESULT not attacker(M) is true.” when M is secret, that is, the adversary cannot
reconstruct M . When phases (see Section 4.1.5) are used, this query returns “RESULT not attacker(M)
is true.” when M is secret in all phases, or equivalently in the last phase. When M contains variables,
they must be declared with their type at the beginning of the query, and ProVerif returns “RESULT
not attacker(M) is true.” when all instances of M are secret.

We can test secrecy in a specific phase n by query attacker(M) phase n. which returns “RESULT
not attacker(M) phase n is true.” when M is secret in phase n, that is, the adversary cannot reconstruct
M in phase n.

We can also test whether the protocol sends a term M on a channel N (during the last phase if
phases are used) by query mess(N,M). This query returns “RESULT not mess(N ,M) is true.” when
the message M is never sent on channel N . We can also specify which phase should be considered by
query mess(N,M) phase n. This query is intended for use when the channel N is private (the adversary
does not have it). When the adversary has the channel N , this query is equivalent to query attacker(M).

Similarly, we can test whether the element (M1, . . . ,Mn) is present in table d by query table(d(M1,
. . . ,Mn)).

ProVerif can also evaluate the reachability of events within a model using the following query:

query x1 : t1, . . . , xn : tn ; event (e(M1, . . . ,Mk) ) .
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This query returns “RESULT not event(e(M1, . . . ,Mk)) is true.” when the event is not reachable.
Such queries are useful for debugging purposes, for example, to detect unreachable branches of a model.
With reference to the “Hello World” script (docs/hello ext.pv) in Chapter 2, one could examine as to
whether the else branch is reachable.

The similar query with inj−event instead of event is useless: it has the same meaning as the
one with event. Injective events are useful only for correspondences described below. Equalities and
inequalities are not allowed in reachability queries as mentioned above.

Basic correspondences

Basic correspondences are queries q = F ==> H where H does not contain nested correspondences.
They mean that, if F holds, then H also holds. We have seen such correspondences in Section 3.2.2. We
can extend them to conjunctions and disjunctions of events in H. For instance,

query event (e0 ) ==> event (e1 ) && event (e2 ) .

means that, if e0 has been executed, then e1 and e2 have been executed. Similarly,

query event (e0 ) ==> event (e1 ) | | event (e2 ) .

means that, if e0 has been executed, then e1 or e2 has been executed. If the correspondence F ==> H
holds, F is an event, and H contains events, then the events in H must be executed before the event F
(or at the same time as F in case an event in H may be equal to F ). This property is proved by stopping
the execution of the process just after the event F .

Conjunctions and disjunctions can be combined:

query event (e0 ) ==> event (e1 ) | | (event (e2 ) && event (e3 ) ) .

means that, if e0 has been executed, then either e1 has been executed, or e2 and e3 have been executed.
The conjunction has higher priority than the disjunction, but one should use parentheses to disambiguate
the expressions. The events can of course have arguments, and can also be injective events. For instance,

query inj−event (e0 ) ==> event (e1 ) | | ( inj−event (e2 ) && event (e3 ) ) .

means that each execution of e0 corresponds to either an execution of e1 (perhaps the same execution of
e1 for different executions of e0), or to a distinct execution of e2 and an execution of e3. Note that using
inj−event or event before the arrow ==> does not change anything, since event is automatically
changed into inj−event before ==> when there is inj−event after the arrow ==>.

Correspondences may also involve the knowledge of the adversary or the messages sent on channels.
For instance,

query a t tacke r (M ) ==> event (e1 ) .

means that, when the adversary knows M , the event e1 has been executed. Conversely,

query event (e1 ) ==> a t tacke r (M ) .

means that, when event e1 has been executed, the adversary knows M . (In practice, ProVerif may have
more difficulties proving the latter correspondence. Technically, ProVerif needs to conclude attacker(M)
from facts that occur in the hypothesis of a clause that concludes event(e1); this hypothesis may get
simplified during the resolution process in a way that makes the desired facts disappear.)

One may also use equalities and inequalities after the arrow ==>. For instance, assuming a free
name a,

query x : t ; event ( e ( x ) ) ==> x = a .

means that the event e(x) can be executed only when x is a. Similarly,

query x : t , y : t ’ ; event ( e ( x ) ) ==> event ( e ’ ( y ) ) && x = f (y )

means that, when the event e(x) is executed, the event event(e’(y)) has been executed and x = f(y).
Using inequalities,

query x : t ; event ( e ( x ) ) ==> x <> a .
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means that the event e(x) can be executed only when x is different from a.
Queries with a conjunction of events before the arrow ==> cannot be written directly but can be

encoded as follows. Suppose that you want to prove a query

event (e1 (M1 ) ) && . . . && event (en (Mn ) ) ==> H

in a process Q and that the events e1, . . . , en do not occur in H. (We consider events of arity 1 for
simplifying notations; the idea extends easily to events of any arity.) Let Q′ be obtained from Q by
replacing all occurrences of event ei(M

′) with insert dei(M
′) where the tables dei are declared by:

table dei(ti) .

where ti is the type of the argument of ei. Define the process Q′′ by

Q′ | ( ! get de1 (x1 ) in . . . get den (xn ) in event eg (x1, . . . , xn ) )

where the event eg is declared by

event eg(t1, . . . tn) .

and prove the query

query event ( eg (M1, . . . ,Mn ) ) ==> H .

in the process Q′′. When eg(M ′

1, . . . ,M
′

n) is executed in Q′′, the messages M ′

1, . . . , M ′

n have been
inserted in tables de1, . . . , den respectively, so the events e1(M

′

1), . . . , en(M
′

n) have been executed in Q.
Conversely, when the events e1(M

′

1), . . . , en(M
′

n) have been executed inQ, one can obtain a corresponding
trace of Q′′ by inserting M ′

i in dei instead of executing ei(M
′

i). After all these insertions, M ′

i is in table
dei for all 1 ≤ i ≤ n, so we can execute event eg(M ′

1, . . . ,M
′

n)) using the last component of Q′′. This
technique is illustrated in Section 5.4.2.

As a side remark, a similar encoding could also be given using private channels instead of tables,
but it is slightly more complex because the output that replaces insert and the input that replaces get
synchronize, so they should be executed at the same time, which is not always true. One would need to
fix that, for instance by adding processes that repeat messages on private channels.

Nested correspondences

The grammar permits the construction of nested correspondences, that is, correspondences F ==> H in
which some of the events H are replaced with correspondences. Such correspondences allow us to order
events. More precisely, in order to explain a nested correspondence F ==> H, let us define a hypothesis
Hs by replacing all arrows ==> of H with conjunctions &&. The nested correspondence F ==> H
holds if and only if the basic correspondence F ==> Hs holds and additionally, for each F ′ ==> H ′

that occurs in F ==> H, if F ′ is an event, then the events of H ′ have been executed before F ′ (or at
the same time as F ′ in case events in H ′ may be equal to F ′).1 For example,

event (e0 ) ==> (event (e1 ) ==> (event (e2 ) ==> event (e3 ) ) )

is true when, if the event e0 has been executed, then events e3, e2, e1 have been previously executed in
that order and before e0. In contrast, the correspondence

event (e0 ) ==> (event (e1 ) ==> event (e2 ) ) && (event (e3 ) ==> event (e4 ) )

holds when, if the event e0 has been executed, then e2 has been executed before e1 and e4 before e3, and
those occurrences of e1 and e3 have been executed before e0.

Even if the grammar of correspondences does not explicitly require that facts F that occur before
arrows in nested correspondences are events (or injective events), in practice they are because the only
goal of nested correspondences is to order such events.

1Although the meaning of a basic correspondence such as event(e0) ==> event(e1) is similar to a logical implication,
the meaning of a nested correspondence such as event(e0) ==> (event(e1) ==> event(e2)) is very different from the log-
ical formula event(e0)⇒(event(e1)⇒event(e2)) in classical logic, which would mean (event(e0)∧event(e1))⇒event(e2).
The nested correspondence event(e0) ==> (event(e1) ==> event(e2)) rather means that, if e0 is executed, then some
instance of e1 is executed (before e0), and if that instance of e1 is executed, then an instance of e2 is executed (before e1).
So the nested correspondence is similar to an abbreviation for the two correspondences event(e0) ==> event(σe1) and
event(σe1) ==> event(σe2) for some substitution σ.
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Our study of the JFK protocol, which can be found in the subdirectory examples/pitype/jfk, pro-
vides several interesting examples of nested correspondence assertions used to prove the correct ordering
of messages of the protocol.

ProVerif proves nested correspondences essentially by proving several correspondences. For instance,
in order to prove

event (e0 ) ==> (event (e1 ) ==> event (e2 ) )

where the events e0, e1, e2 may have arguments, ProVerif proves that each execution of e0 is preceded
by the execution of an instance of e1, and that each execution of that instance of e1 is preceded by the
execution of an instance of e2. For this reason, adding more arguments in intermediate events such as e1
may facilitate the proof: it is easier to prove that e2 has been executed when one has more information
on which event e1 has been executed.

A typical usage of nested correspondences is to order all messages in a protocol. One would like to
prove a correspondence in the style:

inj−event (eend ) ==>
( inj−event (en ) ==> . . . ==> ( inj−event (e1 ) ==> inj−event (e0 ) ) )

where e0 means that the first message of the protocol has been sent, ei (i > 0) means that the i-th
message of the protocol has been received and the (i+ 1)-th has been sent, and finally eend means that
the last message of the protocol has been received. (These events have at least as arguments the messages
of the protocol.) However, the proof of such a correspondence typically fails in ProVerif: in order to
prove the above correspondence, ProVerif tries to prove in particular that

inj−event (e1 ) ==> inj−event (e0 )

for some instances of e1 and e0, and that proof fails because the adversary can replay the first message
of the protocol, so that a single execution of e0 may correspond to several executions of e1. One solution
to this problem is to combine a ProVerif proof with a manual argument. One proves using ProVerif the
weaker correspondence

inj−event (eend ) ==>
( inj−event (en ) ==> . . . ==> ( inj−event (e1 ) && inj−event (e0 ) ) )

which does not order e0 and e1. In order to prevent actual replays, the first message of the protocol
typically contains a nonce, and one can then manually argue that event e1 with that nonce cannot be
executed before the nonce has been sent, so before e0 has been executed with the same nonce. This
argument allows us to order the events e0 and e1 and therefore prove the desired correspondence

inj−event (eend ) ==>
( inj−event (en ) ==> . . . ==> ( inj−event (e1 ) ==> inj−event (e0 ) ) )

The event ei, which means that the i-th message of the protocol has been received and the (i+1)-th has
been sent, must be placed after the input that receives the i-th message (when ei is executed, the i-th
message has been received before) and before the output that sends the (i + 1)-th message (when the
(i+1)-th message has been sent, we can prove that ei has been executed). In practice, one generally places
it just before the output that sends the (i+ 1)-th message, so that all components of this message have
been computed and can be given as argument to the event. This technique is illustrated in Section 5.4.3.

4.3.2 Observational equivalence

The notion of indistinguishability is a powerful concept which allows us to reason about complex proper-
ties that cannot be expressed as reachability or correspondence properties. The notion of indistinguisha-
bility is generally named observational equivalence in the formal model. Intuitively, two processes P and
Q are observationally equivalent, written P ≈ Q, when an active adversary cannot distinguish P from
Q. Formal definitions can be found in [AF01, BAF08]. Using this notion, one can for instance specify
that a process P follows its specification Q by saying that P ≈ Q. ProVerif can prove some observational
equivalences, but not all of them because their proof is complex. In this section, we present the queries
that enable us to prove observational equivalences using ProVerif.
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Strong secrecy

A first class of equivalences that ProVerif can prove is strong secrecy. Strong secrecy means that the
attacker is unable to distinguish when the secret changes. In other words, the value of the secret should
not affect the observable behavior of the protocol. Such a notion is useful to capture the adversary’s
ability to learn partial information about the secret: when the adversary learns the first component of a
pair, for instance, the whole pair is secret in the sense of reachability (the adversary cannot reconstruct
the whole pair because it does not have the second component), but it is not secret in the sense of strong
secrecy (the adversary can notice changes in the value of the pair, since it has its first component).
The concept is particularly important when the secret consists of known values. Consider for instance
a process P that uses a boolean b. The variable b can take two values, true or false, which are both
known to the adversary, so it is not secret in the sense of reachability. However, one may express that b
is strongly secret by saying that P{true/b} ≈ P{false/b}: the adversary cannot determine whether b is
true or false. ({true/b} denotes the substitution that replaces b with true.)

The strong secrecy of values x1, . . . , xn is denoted by

noninterf x1, . . . , xn .

When the process under consideration is P , this query is true if and only if

P{M1/x1, . . . ,Mn/xn} ≈ P{M ′

1/x1, . . . ,M
′

n/xn}

for all terms M1, . . . ,Mn,M
′

1, . . . ,M
′

n. ({M1/x1, . . . ,Mn/xn} denotes the substitution that replaces x1

with M1, . . . , xn with Mn.) In other words, the adversary cannot distinguish changes in the values of
x1, . . . , xn. The values x1, . . . , xn must be free names of P , declared by free xi : ti [private]. This point
is particularly important: if x1, . . . , xn do not occur in P or occur as bound names or variables in P , the
query noninterf x1, . . . , xn holds trivially, because P{M1/x1, . . . ,Mn/xn} = P{M ′

1/x1, . . . ,M
′

n/xn}!
To express secrecy of bound names or variables, one can use choice, described below. In the equivalence
above, the adversary is permitted to replace the values x1, . . . , xn with any term M1, . . . ,Mn,M

′

1, . . . ,M
′

n

it can build, that is, any term that can be built from public free names, public constructors, and fresh
names created by the adversary. These terms cannot contain bound names (or private free names).

For instance, this strong secrecy query can be used to show the secrecy of a payload sent encrypted
under a session key. Here is a trivial example of a such situation, in which we use a previously shared
long-term key k as session key (file docs/ex noninterf1.pv).

1 free c : channel .
2
3 (∗ Shared key encryp t ion ∗)
4 type key .
5 fun senc ( b i t s t r i n g , key ) : b i t s t r i n g .
6 reduc fora l l x : b i t s t r i n g , y : key ; sdec ( senc (x , y ) , y ) = x .
7
8 (∗ The shared key ∗)
9 free k : key [ private ] .

10
11 (∗ Query ∗)
12 free s e c r e t : b i t s t r i n g [ private ] .
13 noninterf s e c r e t .
14
15 process ( ! out ( c , senc ( s e c r e t , k ) ) ) |
16 ( ! in ( c , x : b i t s t r i n g ) ; l et s = sdec (x , k ) in 0)

One can also specify the set of terms in which M1, . . . ,Mn,M
′

1, . . . ,M
′

n are taken, using a variant of
the noninterf query:

noninterf x1 among (M1,1, . . . ,M1,k1
) ,

. . . ,
xn among (Mn,1, . . . ,Mn,kn

) .
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This query is true if and only if

P{M1/x1, . . . ,Mn/xn} ≈ P{M ′

1/x1, . . . ,M
′

n/xn}

for all terms M1,M
′

1 ∈ {M1,1, . . . ,M1,k1
}, . . . , Mn,M

′

n ∈ {Mn,1, . . . ,Mn,kn
}. Obviously, the terms

Mj,1, . . . ,Mj,kj
must have the same type as xj . For instance, the secrecy of a boolean b could be

expressed by noninterf b among (true, false).
Consider the following example (docs/ex noninterf2.pv) in which the attacker is asked to distin-

guish between sessions which output x ∈ {n, h(n)}, where n is a private name.

1 free c : channel .
2
3 fun h( b i t s t r i n g ) : b i t s t r i n g .
4
5 free x , n : b i t s t r i n g [ private ] .
6 noninterf x among (n , h (n ) ) .
7
8 process out ( c , x )

Note that free x,n: bitstring [private]. is a convenient shorthand for

free x : b i t s t r i n g [ private ] .
free n : b i t s t r i n g [ private ] .

More complex examples can be found in subdirectory examples/pitype/noninterf.

Off-line guessing attacks

Protocols may rely upon weak secrets, that is, values with low entropy, such as human-memorable
passwords. Protocols which rely upon weak secrets are often subject to off-line guessing attacks, whereby
an attacker passively observes, or actively participates in, an execution of the protocol and then has the
ability to verify if a guessed value is indeed the weak secret without further interaction with the protocol.
This makes it possible for the adversary to enumerate a dictionary of passwords, verify each of them,
and find the correct one. The absence of off-line guessing attacks against a name n can be tested by the
query:

weaksecret n .

where n is declared as a private free name: free n : t [private]. ProVerif then tries to prove that the
adversary cannot distinguish a correct guess of the secret from an incorrect guess. This can be written
formally as an observational equivalence

P | phase 1 ; out ( c , n) ≈ P | phase 1 ; new n′ : t ; out ( c , n′ )

where P is the process under consideration and t is the type of n. In phase 0, the adversary interacts
with the protocol P . In phase 1, the adversary can no longer interact with P , but it receives either the
correct password n or a fresh (incorrect) password n′, and it should not be able to distinguish between
these two situations.

As an example, we will consider the näıve voting protocol introduced by Delaune & Jacquemard [DJ04].
The protocol proceeds as follows. The voter V constructs her ballot by encrypting her vote v with the
public key of the administrator. The ballot is then sent to the administrator whom is able to decrypt
the message and record the voter’s vote, as modeled in the file docs/ex weaksecret.pv shown below:

1 free c : channel .
2
3 type skey .
4 type pkey .
5
6 fun pk ( skey ) : pkey .
7 fun aenc ( b i t s t r i n g , pkey ) : b i t s t r i n g .
8
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9 reduc fora l l m: b i t s t r i n g , k : skey ; adec ( aenc (m, pk (k ) ) , k ) = m.
10
11 free v : b i t s t r i n g [ private ] .
12 weaksecret v .
13
14 l et V(pkA : pkey ) = out ( c , aenc (v , pkA ) ) .
15
16 l et A(skA : skey ) = in ( c , x : b i t s t r i n g ) ; l et v ’ = adec (x , skA) in 0 .
17
18 process

19 new skA : skey ;
20 l et pkA = pk( skA) in

21 out ( c , pkA ) ;
22 ! (V(pkA) | A(skA ) )

The voter’s vote is syntactically secret; however, if the adversary is assumed to know a small set of
possible votes, then v can be deduced from the ballot. The off-line guessing attack can be thwarted by
the use of a probabilistic public-key encryption scheme.

More examples regarding guessing attacks can be found in subdirectory examples/pitype/weaksecr.

Observational equivalence between processes that differ only by terms

The most general class of equivalences that ProVerif can prove are equivalences P ≈ Q where the
processes P and Q have the same structure and differ only in the choice of terms. These equivalences
are written in ProVerif by a single “biprocess” that encodes both P and Q. Such a biprocess uses the
construct choice[M ,M ′] to represent the terms that differ between P and Q: P uses the first component
of the choice, M , while Q uses the second one, M ′. (The keyword diff is also allowed as a synonym
for choice; diff is used in research papers.) For example, the secret ballot (privacy) property of an
electronic voting protocol can be expressed as:

P (skA, v1) | P (skB , v2) ≈ P (skA, v2) | P (skB , v1) (4.1)

where P is the voter process, skA (respectively skB) is the voter’s secret key and v1 (respectively v2) is
the candidate for whom the voter wishes to vote for: one cannot distinguish the situation in which A
votes for v1 and B votes from v2 from the situation in which A votes for v2 and B votes for v1. (The
simpler equivalence P (skA, v1) ≈ P (skA, v2) typically does not hold because, if A is the only voter, one
can know for whom she voted from the final result of the election.) The pair of processes (4.1) can be
expressed as a single biprocess as follows:

P (skA, choice[v1, v2]) | P (skB , choice[v2, v1])

Accordingly, we extend our grammar for terms to include choice[M ,N ].
Unlike the previous security properties we have studied, there is no need to explicitly tell ProVerif that

a script aims at verifying an observational equivalence, since this can be inferred from the occurrence of
choice[M ,N ]. It should be noted that the analysis of observational equivalence is incompatible with other
security properties, that is, scripts in which choice[M ,N ] appears cannot contain query, noninterf,
nor weaksecret. (For this reason, you may have to write several distinct input files in order to prove
several properties of the same protocol. You can use a preprocessor such as m4 or cpp to generate all
these files from a single master file.)

Example: Decisional Diffie-Hellman assumption The decisional Diffie-Hellman (DDH) assump-
tion states that, given a cyclic group G of prime order q with generator g, (ga, gb, gab) is computationally
indistinguishable from (ga, gb, gc), where a, b, c are random elements from Z

∗

q . A formal counterpart of
this property can be expressed as an equivalence using the ProVerif script below (file docs/dh-fs.pv).

1 free d : channel .
2
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3 type G.
4 type exponent .
5
6 const g : G [ data ] .
7 fun exp (G, exponent ) : G.
8
9 equation fora l l x : exponent , y : exponent ; exp ( exp (g , x ) , y ) = exp ( exp (g , y ) , x ) .

10
11 process

12 new a : exponent ; new b : exponent ; new c : exponent ;
13 out (d , ( exp (g , a ) , exp (g , b ) , choice [ exp ( exp (g , a ) , b ) , exp (g , c ) ] ) )

ProVerif succeeds in proving this equivalence. Intuitively, this result shows that our model of the Diffie-
Hellman key agreement is stronger than the Decisional Diffie-Hellman assumption.

Observe that the biprocess out(d,(exp(g,a),exp(g,b),choice[exp(exp(g,a),b),exp(g,c )])) is equivalent
to

out ( choice [ d , d ] , ( choice [ exp (g , a ) , exp (g , a ) ] , choice [ exp (g , b ) , exp (g , b ) ] ,
choice [ exp ( exp (g , a ) , b ) , exp (g , c ) ] ) ) .

That is, choice[M,M] may be abbreviated as M; it follows immediately that the choice operator is only
needed to model the terms that are different in the pair of processes.

Real-or-random secrecy In the computational model, one generally expresses the secrecy of a value
x by saying that x is indistinguishable from a fresh random value. One can express a similar idea in
the formal model using observational equivalence. For instance, this notion can be used for proving
secrecy of a session key k, as in the following variant of the fixed handshake protocol of Chapter 3 (file
docs/ex handshake RoR.pv).

1 free c : channel .
2
3 l et c l i en tA (pkA : pkey , skA : skey , pkB : spkey ) =
4 out ( c , pkA ) ;
5 in ( c , x : b i t s t r i n g ) ;
6 l et y = adec (x , skA) in

7 l et (=pkA,=pkB , k : key ) = checks ign (y , pkB) in

8 new random : key ;
9 out ( c , choice [ k , random ] ) .

10
11 l et serverB (pkB : spkey , skB : sskey , pkA : pkey ) =
12 in ( c , pkX : pkey ) ;
13 new k : key ;
14 out ( c , aenc ( s i gn ( (pkX , pkB , k ) , skB ) ,pkX ) ) .
15
16 process

17 new skA : skey ;
18 new skB : sskey ;
19 l et pkA = pk( skA) in out ( c , pkA ) ;
20 l et pkB = spk ( skB ) in out ( c , pkB ) ;
21 ( ( ! c l i en tA (pkA , skA , pkB) ) | ( ! serverB (pkB , skB , pkA) ) )

In Line 9, one outputs to the adversary either the real key (k) or a random key (random), and the
equivalence holds when the adversary cannot distinguish these two situations. As ProVerif finds, the
equivalence does not hold in this example, because of a replay attack: the adversary can replay the
message from the server B to the client A, which leads several sessions of the client to have the same
key k. The adversary can distinguish this situation from a situation in which the key is a fresh random
number (random) generated at each session of the client. Another example can be found in Section 5.4.2.
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When the observational equivalence proof fails on the biprocess given by the user, ProVerif tries
to simplify that biprocess by transforming as far as possible tests that occur in subprocesses into
tests done inside terms, which increases the chances of success of the proof. The proof is then re-
tried on the simplified process(es). This simplification of biprocesses can be turned off by the setting
set simplifyProcess = false . (See Section 6.2.2 for details on this setting.) More complex examples using
choice can be found in subdirectory examples/pitype/choice.

Remarks The absence of off-line guessing attacks can also be expressed using choice:

P | phase 1 ; new n′ : t ; out ( c , choice [n ,n′ ] )

This is how ProVerif handles guessing attacks internally, but using weaksecret is generally more con-
venient in practice. (For instance, one can query for the secrecy of several weak secrets in the same
ProVerif script.)

Strong secrecy noninterf x1, . . . , xn can also be formalized using choice, by inputting two messages
x′

i, x′′

i for each i ≤ n and defining xi by let xi = choice[x′

i, x
′′

i ] before starting the protocol itself
(possibly in an earlier phase than the protocol). However, the query noninterf is typically much more
efficient than choice. On the other hand, in the presence of equations that can be applied to the secrets,
noninterf commonly leads to false attacks. So we recommend trying with noninterf for properties
that can be expressed with it, especially when there is no equation, and using choice in the presence of
equations or for properties that cannot be expressed using noninterf.

Strong secrecy with among can also be encoded using choice. That may require many equiva-
lences when the sets are large, even if some examples are very easy to encode. For instance, the query
noninterf b among (true, false) can also be encoded as let b = choice[true, false ] in P where P is
the protocol under consideration.

Static equivalence [AF01] is an equivalence between frames, that is, substitutions with hidden names

φ = new n1 : t1 ; . . . new nk : tk ; {M1/x1, . . . ,Ml/xl}
φ′ = new n′

1 : t′1 ; . . . new n′

k′ : t′k′ ; {M ′

1/x1, . . . ,M
′

l/xl}

Static equivalence corresponds to the case in which the adversary receives either the messages M1, . . . ,Ml

or M ′

1, . . . ,M
′

l , and should not be able to distinguish between these two situations; static equivalence
can be expressed by the observational equivalence

new n1 : t1 ; . . . new nk : tk ; out ( c , (M1, . . . ,Ml ) )
≈
new n′

1 : t′1 ; . . . new n′

k′ : t′k′ ; out ( c , (M ′

1, . . . ,M
′

l ) )

which can always be written using choice:

new n1 : t1 ; . . . new nk : tk ; new n′

1 : t′1 ; . . . new n′

k′ : t′k′ ;
out ( c , ( choice [M1,M

′

1 ] , . . . , choice [Ml,M
′

l ] ) )

The Diffie-Hellman example above is an example of static equivalence.

Internally, ProVerif proves a property much stronger than observational equivalence of P and Q.
In fact, it shows that for each reachable test, the same branch of the test is taken both in P and
in Q; for each reachable destructor application, the destructor application either succeeds both in P
and Q or fails both in P and Q; for each reachable configuration with an input and an output on
private channels, the channels are equal in P and in Q, or different in P and in Q. In other words,
it shows that each reduction step is executed in the same way in P and Q. Because this property is
stronger than observational equivalence, we may have “false attacks” in which this property is wrong
but observational equivalence in fact holds. When ProVerif does not manage to prove observational
equivalence, it tries to reconstruct an attack against the stronger property, that is, it provides a trace of
P and Q that arrives at a point at which P and Q reduce in a different way. This trace explains why
the proof fails, and may also enable the user to understand if observational equivalence really does not
hold, but it does not provide a proof that observational equivalence does not hold. That is why ProVerif
never concludes “RESULT [Query] is false” for observational equivalences; when the proof fails, it just
concludes “RESULT [Query] cannot be proved”.
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Observational equivalence with synchronizations Synchronizations (see Section 4.1.6) can help
proving equivalences with choice, because they allow swapping data between processes at the synchro-
nization points [BS16]. The following toy example illustrates this point:

1 free c : channel .
2 free m, n : b i t s t r i n g .
3
4 process

5 (
6 out ( c ,m) ;
7 sync 1 ;
8 out ( c , choice [m, n ] )
9 ) | (

10 sync 1 ;
11 out ( c , choice [ n ,m] )
12 )

The two processes represented by this biprocess are observationally equivalent, and this property is
proved by swapping m and n in the second component of choice at the synchronization point. By
default, ProVerif tries all possible swapping strategies in order to prove the equivalence. It is also
possible to choose the swapping strategy in the input file by set swapping = ”swapping stragegy”., or
to choose it interactively by adding set interactiveSwapping = true. to the input file. In the latter case,
ProVerif displays a description of the possible swappings and asks the user which swapping strategy to
choose.

A swapping strategy is described as follows. Each synchronization is tagged with a unique identifier,
either chosen by the user and written after the synchronization (sync n [tag ]), or chosen automatically
by ProVerif. The swapping strategies are permutations of the synchronizations, represented by their tag.
They are denoted as follows:

tag1,1−> . . .−> tag1,n1
;. . .;tagk,1−> . . .−> tagk,nk

which means that tag i,j has image tag i,j+1 when j < ni and tag i,ni
has image tag i,1 by the permutation.

(In other words, we give the cycles of the permutation.) When the tag of a synchronization does not
appear in the swapping strategy, data is not swapped at that synchronization. For instance, the previous
example may the rewritten:

1 free c : channel .
2 free m, n : b i t s t r i n g .
3
4 process

5 (
6 out ( c ,m) ;
7 sync 1 [ tag1 ] ;
8 out ( c , choice [m, n ] )
9 ) | (

10 sync 1 [ tag2 ] ;
11 out ( c , choice [ n ,m] )
12 )

with additional tags, and the swapping strategy is tag1 −> tag2.
Since the tags must be unique for each synchronization, ProVerif fails when the user chooses the

tag of a synchronization explicitly and this synchronization occurs in a process macro that is expanded
several times. Indeed, in this case, the same tag is repeated in all expansions of the process macro.
Solutions include letting ProVerif choose the tag or writing several process macros, each with a different
tag. When a synchronization is tagged with the special tag noswap in the input file, data is not swapped
at that synchronization.

Swapping data at synchronizations point can help for instance proving ballot secrecy in e-voting
protocols: as mentioned above, this property is proved by showing that the two processes represented
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by the biprocess
P (skA, choice[v1, v2]) | P (skB , choice[v2, v1])

are observationally equivalent, and proving this property often requires swapping the votes v1 and v2.
This technique is illustrated on the FOO e-voting protocol in the file examples/pitype/sync/foo.pv.

Observational equivalence between two processes

ProVerif can also prove equivalence P ≈ Q between two processes P and Q presented separately, using
the following command (instead of process P )

equivalence P Q

where P and Q are processes that do not contain choice. ProVerif will in fact try to merge the processes
P and Q into a biprocess and then prove equivalence of this biprocess. Note that ProVerif is not always
capable of merging two processes into a biprocess: the structure of the two processes must be fairly
similar. Here is a toy example:

1 type key .
2 type macs .
3
4 fun mac( b i t s t r i n g , key ) : macs .
5
6 free c : channel .
7
8 equivalence

9 ! new k : key ; ! new a : b i t s t r i n g ; out ( c , mac(a , k ) )
10 ! new k : key ; new a : b i t s t r i n g ; out ( c , mac(a , k ) )

The difference between the two processes is that the first process can use the same key k for sending
several MACs, while the second one sends one MAC for each key k. Even though the structure of the two
processes is slightly different (there is an additional replication in the first process), ProVerif manages
to merge these two processes into a single biprocess:

1 !
2 new k 39 : key ;
3 !
4 new a 40 : b i t s t r i n g ;
5 new k 41 : key ;
6 new a 42 : b i t s t r i n g ;
7 out ( c , choice [ mac( a 40 , k 39 ) ,mac( a 42 , k 41 ) ] )

and to prove that the two processes are observationally equivalent.
When proving an equivalence by equivalence P Q, the processes P and Q must not contain syn-

chronizations sync n (see Section 4.1.6).
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Chapter 5

Needham-Schroeder public key
protocol: Case Study

The Needham-Schroeder public key protocol [NS78] is intended to provide mutual authentication of two
principals Alice A and Bob B. Although it is not stated in the original description, the protocol may
also provide a secret session key shared between the participants. In addition to the two participants,
we assume the existence of a trusted key server S.

The protocol proceeds as follows. Alice contacts the key server S and requests Bob’s public key. The
key server responds with the key pk(skB) paired with Bob’s identity, signed using his private signing key
for the purposes of authentication. Alice proceeds by generating a nonce Na, pairs it with her identity A,
and sends the message encrypted with Bob’s public key. On receipt, Bob decrypts the message to recover
Na and the identity of his interlocutor A. Bob then establishes Alice’s public key pk(skA) by requesting
it to the key server S. Bob then generates his nonce Nb and sends the message (Na,Nb) encrypted for
Alice. Finally, Alice replies with the message aenc(Nb, pk(skB)). The rationale behind the protocol is
that, since only Bob can recover Na, only he can send message 6; and hence authentication of Bob should
hold. Similarly, only Alice should be able to recover Nb; and hence authentication of Alice is expected
on receipt of message 7. Moreover, it follows that Alice and Bob have established the shared secrets
Na and Nb which can subsequently be used as session keys. The protocol can be summarized by the
following narration:

(1) A → S : (A, B)
(2) S → A : sign((B, pk(skB)), skS)
(3) A → B : aenc((Na, A), pk(skB))
(4) B → S : (B, A)
(5) S → B : sign((A, pk(skA)), skS)
(6) B → A : aenc((Na, Nb), pk(skA))
(7) A → B : aenc(Nb, pk(skB))

Informally, the protocol is expected to satisfy the following properties:

1. Authentication of A to B: if B reaches the end of the protocol and he believes he has done so with
A, then A has engaged in a session with B.

2. Authentication of B to A: similarly to the above.

3. Secrecy for A: if A reaches the end of the protocol with B, then the nonces Na and Nb that A has
are secret; in particular, they are suitable for use as session keys for preserving the secrecy of an
arbitrary term M in the symmetric encryption senc(M,K) where K ∈ {Na,Nb}.

4. Secrecy for B: similarly.

However, nearly two decades after the protocol’s inception, Gavin Lowe discovered a man-in-the-middle
attack [Low96]. An adversary I engages Alice in a legitimate session of the protocol; and in parallel, the
adversary is able to impersonate Alice in a session with Bob. In practice, one may like to consider the
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adversary to be a malicious retailer I whom Alice is willing to communicate with (presumably without
the knowledge that the retailer is corrupt), and Bob is an honest institution (for example, a bank) whom
Alice conducts legitimate business with. In this scenario, the honest bank B is duped by the malicious
retailer I who is pertaining to be Alice. The protocol narration below describes the attack (with the
omission of key distribution).

A → I : aenc((Na,A), pk(skI))
I → B : aenc((Na,A), pk(skB))
B → A : aenc((Na,Nb), pk(skA))
A → I : aenc(Nb, pk(skI))
I → B : aenc(Nb, pk(skB))

Lowe fixes the protocol by the inclusion of Bob’s identity in message 6; that is,

(6′) B → A : aenc((Na,Nb,B), pk(skA))

This correction allows Alice to verify whom she is running the protocol with and prevents the attack. In
the remainder of this chapter, we demonstrate how the Needham-Schroeder public key protocol can be
analyzed using ProVerif with various degrees of complexity.

5.1 Simplified Needham-Schroeder protocol

We begin our study with the investigation of a simplistic variant which allows us to concentrate on the
modeling process rather than the complexities of the protocol itself. Accordingly, we consider the essence
of the protocol which is specified as follows:

A → B : aenc((Na,pk(skA)), pk(skB))
B → A : aenc((Na,Nb), pk(skA))
A → B : aenc(Nb, pk(skB))

In this formalization, the role of the trusted key server is omitted and hence we assume that participants
Alice and Bob are in possession of the necessary public keys prior to the execution of the protocol. In
addition, Alice’s identity is modeled using her public key.

5.1.1 Basic encoding

The declarations are standard, they specify a public channel c and constructors/destructors required to
capture cryptographic primitives in the now familiar fashion:

1 free c : channel .
2
3 (∗ Pub l i c key encryp t ion ∗)
4 type pkey .
5 type skey .
6
7 fun pk ( skey ) : pkey .
8 fun aenc ( b i t s t r i n g , pkey ) : b i t s t r i n g .
9 reduc fora l l x : b i t s t r i n g , y : skey ; adec ( aenc (x , pk (y ) ) , y ) = x .

10
11 (∗ S igna ture s ∗)
12 type spkey .
13 type s skey .
14
15 fun spk ( sskey ) : spkey .
16 fun s i gn ( b i t s t r i n g , s skey ) : b i t s t r i n g .
17 reduc fora l l x : b i t s t r i n g , y : s skey ; getmess ( s i gn (x , y ) ) = x .
18 reduc fora l l x : b i t s t r i n g , y : s skey ; checks ign ( s i gn (x , y ) , spk (y ) ) = x .
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19
20 (∗ Shared key encryp t ion ∗)
21 fun senc ( b i t s t r i n g , b i t s t r i n g ) : b i t s t r i n g .
22 reduc fora l l x : b i t s t r i n g , y : b i t s t r i n g ; sdec ( senc (x , y ) , y ) = x .

Process macros for A and B can now be declared and the main process can also be specified:

l et processA (pkB : pkey , skA : skey ) =
in ( c , pkX : pkey ) ;
new Na : b i t s t r i n g ;
out ( c , aenc ( (Na , pk ( skA ) ) , pkX ) ) ;
in ( c , m: b i t s t r i n g ) ;
l et (=Na , NX: b i t s t r i n g ) = adec (m, skA) in

out ( c , aenc (NX, pkX ) ) .

l et processB (pkA : pkey , skB : skey ) =
in ( c , m: b i t s t r i n g ) ;
l et (NY: b i t s t r i n g , pkY : pkey ) = adec (m, skB ) in

new Nb: b i t s t r i n g ;
out ( c , aenc ( (NY, Nb) , pkY ) ) ;
in ( c , m3: b i t s t r i n g ) ;
i f Nb = adec (m3, skB ) then 0 .

process

new skA : skey ; l et pkA = pk( skA) in out ( c , pkA ) ;
new skB : skey ; l et pkB = pk ( skB ) in out ( c , pkB ) ;
( ( ! processA (pkB , skA ) ) | ( ! processB (pkA , skB ) ) )

The main process begins by constructing the private keys skA and skB for principals A and B respectively.
The public parts pk(skA) and pk(skB) are then output on the public communication channel c, ensuring
they are available to the adversary. (Observe that this is done using the handles pkA and pkB for
convenience.) An unbounded number of instances of processA and processB are then instantiated (with
the relevant parameters), representing A and B’s willingness to participate in arbitrarily many sessions
of the protocol.

We assume that Alice is willing to run the protocol with any other principal; the choice of her inter-
locutor will be made by the environment. This is captured by modeling the first input in(c, pkX: pkey)
to processA as the interlocutor’s public key pkX. The actual protocol then commences with Alice select-
ing her nonce Na, which she pairs with her identity pkA = pk(skA) and outputs the message encrypted
with her interlocutor’s public key pkX. Meanwhile, Bob awaits an input from his initiator; on receipt,
Bob decrypts the message to recover his initiator’s nonce NY and identity pkY. Bob then generates
his nonce Nb and sends the message (NY,Nb) encrypted for the initiator using the key pkY. Next, if
Alice believes she is talking to her interlocutor, that is, if the ciphertext she receives contains her nonce
Na, then she replies with aenc(Nb, pk(skB)). (Recall that only the interlocutor who has the secret key
corresponding to the public key part pkX should have been able to recover Na and hence if the ciphertext
contains her nonce, then she believes authentication of her interlocutor holds.) Finally, if the ciphertext
received by Bob contains his nonce Nb, then he believes that he has successfully completed the protocol
with his initiator.

5.1.2 Security properties

Recall that the primary objective of the protocol is mutual authentication of the principals Alice and
Bob. Accordingly, when A reaches the end of the protocol with the belief that she has done so with B,
then B has indeed engaged in a session with A; and vice-versa for B. We declare the events:

• event beginAparam(pkey), which is used by Bob to record the belief that the initiator whose public
key is supplied as a parameter has commenced a run of the protocol with him.
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• event endAparam(pkey), which means that Alice believes she has successfully completed the pro-
tocol with Bob. This event is executed only when Alice believes she runs the protocol with Bob,
that is, when pkX = pkB. Alice supplies her public key pk(skA) as the parameter.

• event beginBparam(pkey), which denotes Alice’s intention to initiate the protocol with an inter-
locutor whose public key is supplied as a parameter.

• event endBparam(pkey), which records Bob’s belief that he has completed the protocol with Alice.
He supplies his public key pk(skB) as the parameter.

Intuitively, if Alice believes she has completed the protocol with Bob and hence executes the event
endAparam(pk(skA)), then there should have been an earlier occurrence of the event beginAparam(pk(
skA)), indicating that Bob started a session with Alice; moreover, the relationship should be injective.
A similar property should hold for Bob.

In addition, we wish to test if, at the end of the protocol, the nonces Na and Nb are secret. These
nonces are names created by new or variables such as NX and NY, while the standard secrecy queries
of ProVerif deal with the secrecy of private free names. To solve this problem, we can use the following
general technique: instead of directly testing the secrecy of the nonces, we use them as session keys in
order to encrypt some free name and test the secrecy of that free name. For instance, in the process for
Alice, we output senc(secretANa,Na) and we test the secrecy of secretANa: secretANa is secret if and
only if the nonce Na that Alice has is secret. Similarly, we output senc(secretANb,NX) and we test the
secrecy of secretANb: secretANb is secret if and only if NX (that is, the nonce Nb that Alice has) is
secret. We proceed symmetrically for Bob using secretBNa and secretBNb.

Observe that the use of four names secretANa, secretANb, secretBNa, secretBNb for secrecy queries
allows us to analyze the precise point of failure; that is, we can study secrecy for Alice and secrecy for
Bob. Moreover, we can analyze both nonces Na and Nb independently for each of Alice and Bob.

The corresponding ProVerif code annotated with events and additional code to model secrecy, along
with the relevant queries, is presented as follows (file docs/NeedhamSchroederPK-var1.pv):

23 (∗ Authen t i ca t i on que r i e s ∗)
24 event beginBparam ( pkey ) .
25 event endBparam( pkey ) .
26 event beginAparam ( pkey ) .
27 event endAparam( pkey ) .
28
29 query x : pkey ; inj−event ( endBparam(x ) ) ==> inj−event ( beginBparam (x ) ) .
30 query x : pkey ; inj−event ( endAparam(x ) ) ==> inj−event ( beginAparam (x ) ) .
31
32 (∗ Secrecy qu e r i e s ∗)
33 free secretANa , secretANb , secretBNa , secretBNb : b i t s t r i n g [ private ] .
34
35 query a t tacke r ( secretANa ) ;
36 a t tacke r ( secretANb ) ;
37 a t tacke r ( secretBNa ) ;
38 a t tacke r ( secretBNb ) .
39
40 (∗ Al i ce ∗)
41 l et processA (pkB : pkey , skA : skey ) =
42 in ( c , pkX : pkey ) ;
43 event beginBparam (pkX ) ;
44 new Na : b i t s t r i n g ;
45 out ( c , aenc ( (Na , pk ( skA ) ) , pkX ) ) ;
46 in ( c , m: b i t s t r i n g ) ;
47 l et (=Na , NX: b i t s t r i n g ) = adec (m, skA) in

48 out ( c , aenc (NX, pkX ) ) ;
49 i f pkX = pkB then

50 event endAparam(pk ( skA ) ) ;
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51 out ( c , senc ( secretANa , Na ) ) ;
52 out ( c , senc ( secretANb , NX) ) .
53
54 (∗ Bob ∗)
55 l et processB (pkA : pkey , skB : skey ) =
56 in ( c , m: b i t s t r i n g ) ;
57 l et (NY: b i t s t r i n g , pkY : pkey ) = adec (m, skB ) in

58 event beginAparam (pkY ) ;
59 new Nb: b i t s t r i n g ;
60 out ( c , aenc ( (NY, Nb) , pkY ) ) ;
61 in ( c , m3: b i t s t r i n g ) ;
62 i f Nb = adec (m3, skB ) then

63 i f pkY = pkA then

64 event endBparam(pk ( skB ) ) ;
65 out ( c , senc ( secretBNa , NY) ) ;
66 out ( c , senc ( secretBNb , Nb ) ) .
67
68 (∗ Main ∗)
69 process

70 new skA : skey ; l et pkA = pk( skA) in out ( c , pkA ) ;
71 new skB : skey ; l et pkB = pk ( skB ) in out ( c , pkB ) ;
72 ( ( ! processA (pkB , skA ) ) | ( ! processB (pkA , skB ) ) )

Analyzing the simplified Needham-Schroeder protocol. Executing the Needham-Schroeder pro-
tocol with the command ./proverif docs/NeedhamSchroederPK-var1.pv | grep "RES" produces the
output:

RESULT not a t ta cke r ( secretANa [ ] ) i s t rue .
RESULT not a t ta cke r ( secretANb [ ] ) i s t rue .
RESULT not a t ta cke r ( secretBNa [ ] ) i s f a l s e .
RESULT not a t ta cke r ( secretBNb [ ] ) i s f a l s e .
RESULT inj−event ( endAparam( x 569 ) ) ==> inj−event ( beginAparam ( x 569 ) ) i s t rue .
RESULT inj−event ( endBparam( x 999 ) ) ==> inj−event ( beginBparam ( x 999 ) ) i s f a l s e .
RESULT ( even event ( endBparam( x 1486 ) ) ==> event ( beginBparam ( x 1486 ) ) i s f a l s e . )

As we would expect, this means that the authentication of B to A and secrecy for A hold; whereas
authentication of A to B and secrecy for B are violated. Notice how the use of four independent queries
for secrecy makes the task of evaluating the output easier. In addition, we learn

RESULT ( even event ( endBparam( x 1486 ) ) ==> event ( beginBparam ( x 1486 ) ) i s f a l s e . )

which means that even the non-injective authentication of A to B is false; that is, Bob may end the
protocol thinking he talks to Alice while Alice has never run the protocol with Bob. For the query
attacker(secretBNa[]), ProVerif returns the following trace of an attack:

1 new skA c r e a t i n g skA 411 at {1}
2 out ( c , pk ( skA 411 ) ) at {3}
3 new skB c r e a t i n g skB 412 at {4}
4 out ( c , pk ( skB 412 ) ) at {6}
5 in ( c , pk ( a ) ) at {8} in copy a 408
6 event ( beginBparam (pk ( a ) ) ) at {9} in copy a 408
7 new Na c r e a t i n g Na 410 at {10} in copy a 408
8 out ( c , aenc ( ( Na 410 , pk ( skA 411 ) ) , pk ( a ) ) ) at {11} in copy a 408
9 in ( c , aenc ( ( Na 410 , pk ( skA 411 ) ) , pk ( skB 412 ) ) ) at {20} in copy a 409

10 event ( beginAparam (pk ( skA 411 ) ) ) at {22} in copy a 409
11 new Nb c r e a t i n g Nb 413 at {23} in copy a 409
12 out ( c , aenc ( ( Na 410 , Nb 413 ) , pk ( skA 411 ) ) ) at {24} in copy a 409
13 in ( c , aenc ( ( Na 410 , Nb 413 ) , pk ( skA 411 ) ) ) at {12} in copy a 408
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14 out ( c , aenc (Nb 413 , pk ( a ) ) ) at {14} in copy a 408
15 in ( c , aenc (Nb 413 , pk ( skB 412 ) ) ) at {25} in copy a 409
16 event ( endBparam(pk ( skB 412 ) ) ) at {28} in copy a 409
17 out ( c , senc ( secretBNa , Na 410 ) ) at {29} in copy a 409
18 out ( c , senc ( secretBNb , Nb 413 ) ) at {30} in copy a 409
19 The at tacke r has the message secretBNa .

This trace corresponds to Lowe’s attack. The first two new and outputs correspond to the creation of
the secret keys and outputs of the public keys of A and B in the main process. Next, processA starts,
inputting the public key pk(a) of its interlocutor: a has been generated by the adversary, so this inter-
locutor is dishonest. A then sends the first message of the protocol aenc((Na 410,pk(skA 411)),pk(a))
(Line 8 of the trace). This message is received by B after having been decrypted and reencrypted
under pkB by the adversary. It looks like a message for a session between A and B, B replies with
aenc((Na 410,Nb 413),pk(skA 411)) which is then received by A. A replies with aenc(Nb 413,pk(a)).
This message is again received by B after having been decrypted and reencrypted under pkB by the
adversary. B has then apparently concluded a session with A, so it sends senc(secretBNa,Na 410). The
adversary has obtained Na 410 by decrypting the message aenc((Na 410,pk(skA 411)),pk(a)) (sent at
Line 8 of the trace), so it can compute secretBNa, thus breaking secrecy. The traces found for the other
queries are similar.

5.2 Full Needham-Schroeder protocol

In this section, we will present a model of the full protocol and will demonstrate the use of some ProVerif
features. (A more generic model is presented in Section 5.3.) In this formalization, we preserve the
types of the Needham-Schroeder protocol more closely. In particular, we model the type nonce (rather
than bitstring) and we introduce the type host for participants identities. Accordingly, we make use
of type conversion where necessary. Since the modeling process should now be familiar, we present the
complete encoding, which can be found in the file docs/NeedhamSchroederPK-var2.pv, and then discuss
particular aspects.

1 free c : channel .
2
3 (∗ Pub l i c key encryp t ion ∗)
4 type pkey .
5 type skey .
6
7 fun pk ( skey ) : pkey .
8 fun aenc ( b i t s t r i n g , pkey ) : b i t s t r i n g .
9 reduc fora l l x : b i t s t r i n g , y : skey ; adec ( aenc (x , pk (y ) ) , y ) = x .

10
11 (∗ S igna ture s ∗)
12 type spkey .
13 type s skey .
14
15 fun spk ( sskey ) : spkey .
16 fun s i gn ( b i t s t r i n g , s skey ) : b i t s t r i n g .
17 reduc fora l l x : b i t s t r i n g , y : s skey ; getmess ( s i gn (x , y ) ) = x .
18 reduc fora l l x : b i t s t r i n g , y : s skey ; checks ign ( s i gn (x , y ) , spk (y ) ) = x .
19
20 (∗ Shared key encryp t ion ∗)
21 type nonce .
22
23 fun senc ( b i t s t r i n g , nonce ) : b i t s t r i n g .
24 reduc fora l l x : b i t s t r i n g , y : nonce ; sdec ( senc (x , y ) , y ) = x .
25
26 (∗ Type conver t e r ∗)
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27 fun non c e t o b i t s t r i n g ( nonce ) : b i t s t r i n g [ data , typeConverter ] .
28
29 (∗ Two honest hos t names A and B ∗)
30 type host .
31 free A, B: host .
32
33 (∗ Key t a b l e ∗)
34 table keys ( host , pkey ) .
35
36 (∗ Authen t i ca t i on que r i e s ∗)
37 event beginBparam ( host ) .
38 event endBparam( host ) .
39 event beginAparam ( host ) .
40 event endAparam( host ) .
41
42 query x : host ; inj−event ( endBparam(x ) ) ==> inj−event ( beginBparam (x ) ) .
43 query x : host ; inj−event ( endAparam(x ) ) ==> inj−event ( beginAparam (x ) ) .
44
45 (∗ Secrecy qu e r i e s ∗)
46 free secretANa , secretANb , secretBNa , secretBNb : b i t s t r i n g [ private ] .
47
48 query a t tacke r ( secretANa ) ;
49 a t tacke r ( secretANb ) ;
50 a t tacke r ( secretBNa ) ;
51 a t tacke r ( secretBNb ) .
52
53 (∗ Al i ce ∗)
54 l et processA (pkS : spkey , skA : skey , skB : skey ) =
55 in ( c , hostX : host ) ;
56 event beginBparam ( hostX ) ;
57 out ( c , (A, hostX ) ) ; (∗ msg 1 ∗)
58 in ( c , ms : b i t s t r i n g ) ; (∗ msg 2 ∗)
59 l et (pkX : pkey , =hostX ) = checks ign (ms , pkS ) in

60 new Na : nonce ;
61 out ( c , aenc ( (Na , A) , pkX ) ) ; (∗ msg 3 ∗)
62 in ( c , m: b i t s t r i n g ) ; (∗ msg 6 ∗)
63 l et (=Na , NX: nonce ) = adec (m, skA) in

64 out ( c , aenc ( n on c e t o b i t s t r i n g (NX) , pkX ) ) ; (∗ msg 7 ∗)
65 i f hostX = B then

66 event endAparam(A) ;
67 out ( c , senc ( secretANa , Na ) ) ;
68 out ( c , senc ( secretANb , NX) ) .
69
70 (∗ Bob ∗)
71 l et processB (pkS : spkey , skA : skey , skB : skey ) =
72 in ( c , m: b i t s t r i n g ) ; (∗ msg 3 ∗)
73 l et (NY: nonce , hostY : host ) = adec (m, skB ) in

74 event beginAparam ( hostY ) ;
75 out ( c , (B, hostY ) ) ; (∗ msg 4 ∗)
76 in ( c ,ms : b i t s t r i n g ) ; (∗ msg 5 ∗)
77 l et (pkY : pkey ,=hostY ) = checks ign (ms , pkS ) in

78 new Nb: nonce ;
79 out ( c , aenc ( (NY, Nb) , pkY ) ) ; (∗ msg 6 ∗)
80 in ( c , m3: b i t s t r i n g ) ; (∗ msg 7 ∗)
81 i f non c e t o b i t s t r i n g (Nb) = adec (m3, skB ) then
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82 i f hostY = A then

83 event endBparam(B) ;
84 out ( c , senc ( secretBNa , NY) ) ;
85 out ( c , senc ( secretBNb , Nb ) ) .
86
87 (∗ Trusted key s e r v e r ∗)
88 l et proces sS ( skS : s skey ) =
89 in ( c , ( a : host , b : host ) ) ;
90 get keys(=b , sb ) in

91 out ( c , s i gn ( ( sb , b ) , skS ) ) .
92
93 (∗ Key r e g i s t r a t i o n ∗)
94 l et processK =
95 in ( c , (h : host , k : pkey ) ) ;
96 i f h <> A && h <> B then insert keys (h , k ) .
97
98 (∗ Main ∗)
99 process

100 new skA : skey ; l et pkA = pk( skA) in out ( c , pkA ) ; insert keys (A, pkA ) ;
101 new skB : skey ; l et pkB = pk ( skB ) in out ( c , pkB ) ; insert keys (B, pkB ) ;
102 new skS : s skey ; l et pkS = spk ( skS ) in out ( c , pkS ) ;
103 ( ( ! processA (pkS , skA , skB ) ) | ( ! processB (pkS , skA , skB ) ) |
104 ( ! proces sS ( skS ) ) | ( ! processK ) )

This process uses a key table in order to relate host names and their public keys. The key table is
declared by table keys(host, pkey). Keys are inserted in the key table in the main process (for the
honest hosts A and B, by insert keys(A, pkA) and insert keys(B, pkB)) and in a key registration
process processK for dishonest hosts. The key server processS looks up the key corresponding to host
b by get keys(=b, sb) in order to build the corresponding certificate. Since Alice is willing to run the
protocol with any other participant and she will request her interlocutor’s public key from the key server,
we must permit the adversary to register keys with the trusted key server (that is, insert keys into the key
table). This behavior is captured by the key registration process processK. Observe that the conditional
if h <> A && h <> B then prevents the adversary from changing the keys belonging to Alice and
Bob. (Recall that when several records are matched by a get query, then one possibility is chosen, but
ProVerif considers all possibilities when reasoning; without the conditional, the adversary can therefore
effectively change the keys belonging to Alice and Bob.)

Evaluating security properties of the Needham-Schroeder protocol. Once again ProVerif is
able to conclude that authentication of B to A and secrecy for A hold, whereas authentication of A to
B and secrecy for B are violated. We omit analyzing the output produced by ProVerif and leave this as
an exercise for the reader.

5.3 Generalized Needham-Schroeder protocol

In the previous section, we considered an undesirable restriction on the participants; namely that the
initiator was played by Alice using the public key pk(skA) and the responder played by Bob using the
public key pk(skB). In this section, we generalize our encoding. Additionally, we also model authentica-
tion as full agreement, that is, agreement on all protocol parameters. The reader will also notice that we
use encrypt and decrypt instead of aenc and adec, and sencrypt and sdecrypt instead of senc and sdec.
The following script can be found in the file docs/NeedhamSchroederPK-var3.pv.

1 (∗ Loops i f t ype s are ignored ∗)
2 set ignoreTypes = f a l s e .
3
4 free c : channel .
5
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6 type host .
7 type nonce .
8 type pkey .
9 type skey .

10 type spkey .
11 type s skey .
12
13 fun non c e t o b i t s t r i n g ( nonce ) : b i t s t r i n g [ data , typeConverter ] .
14
15 (∗ Pub l i c key encryp t ion ∗)
16 fun pk ( skey ) : pkey .
17 fun encrypt ( b i t s t r i n g , pkey ) : b i t s t r i n g .
18 reduc fora l l x : b i t s t r i n g , y : skey ; decrypt ( encrypt (x , pk (y ) ) , y ) = x .
19
20 (∗ S igna ture s ∗)
21 fun spk ( sskey ) : spkey .
22 fun s i gn ( b i t s t r i n g , s skey ) : b i t s t r i n g .
23 reduc fora l l m: b i t s t r i n g , k : s skey ; getmess ( s i gn (m, k ) ) = m.
24 reduc fora l l m: b i t s t r i n g , k : s skey ; checks ign ( s i gn (m, k ) , spk (k ) ) = m.
25
26 (∗ Shared key encryp t ion ∗)
27 fun sencrypt ( b i t s t r i n g , nonce ) : b i t s t r i n g .
28 reduc fora l l x : b i t s t r i n g , y : nonce ; sdecrypt ( sencrypt (x , y ) , y ) = x .
29
30 (∗ Secrecy assumptions ∗)
31 not a t tacke r (new skA ) .
32 not a t tacke r (new skB ) .
33 not a t tacke r (new skS ) .
34
35 (∗ 2 honest hos t names A and B ∗)
36 free A, B: host .
37
38 table keys ( host , pkey ) .
39
40 (∗ Queries ∗)
41 free secretANa , secretANb , secretBNa , secretBNb : b i t s t r i n g [ private ] .
42 query a t tacke r ( secretANa ) ;
43 a t tacke r ( secretANb ) ;
44 a t tacke r ( secretBNa ) ;
45 a t tacke r ( secretBNb ) .
46
47 event beginBparam ( host , host ) .
48 event endBparam( host , host ) .
49 event beginAparam ( host , host ) .
50 event endAparam( host , host ) .
51 event beg inB fu l l ( host , host , pkey , pkey , nonce , nonce ) .
52 event endBfu l l ( host , host , pkey , pkey , nonce , nonce ) .
53 event beg inAfu l l ( host , host , pkey , pkey , nonce , nonce ) .
54 event endAfu l l ( host , host , pkey , pkey , nonce , nonce ) .
55
56 query x : host , y : host ;
57 inj−event ( endBparam(x , y ) ) ==> inj−event ( beginBparam (x , y ) ) .
58
59 query x1 : host , x2 : host , x3 : pkey , x4 : pkey , x5 : nonce , x6 : nonce ;
60 inj−event ( endBfu l l ( x1 , x2 , x3 , x4 , x5 , x6 ) )



60 CHAPTER 5. NEEDHAM-SCHROEDER: CASE STUDY

61 ==> inj−event ( b eg i nB fu l l ( x1 , x2 , x3 , x4 , x5 , x6 ) ) .
62
63 query x : host , y : host ;
64 inj−event ( endAparam(x , y ) ) ==> inj−event ( beginAparam (x , y ) ) .
65
66 query x1 : host , x2 : host , x3 : pkey , x4 : pkey , x5 : nonce , x6 : nonce ;
67 inj−event ( endAfu l l ( x1 , x2 , x3 , x4 , x5 , x6 ) )
68 ==> inj−event ( beg inAfu l l ( x1 , x2 , x3 , x4 , x5 , x6 ) ) .
69
70 (∗ Role o f the i n i t i a t o r wi th i d e n t i t y xA and s e c r e t key skxA ∗)
71 l et p r o c e s s I n i t i a t o r ( pkS : spkey , skA : skey , skB : skey ) =
72 (∗ The a t t a c k e r s t a r t s the i n i t i a t o r by choos ing i d e n t i t y xA ,
73 and i t s i n t e r l o c u t o r xB0 .
74 We check t ha t xA i s hones t ( i . e . i s A or B)
75 and ge t i t s corresponding key . ∗)
76 in ( c , (xA : host , hostX : host ) ) ;
77 i f xA = A | | xA = B then

78 l et skxA = i f xA = A then skA else skB in

79 l et pkxA = pk ( skxA) in

80 (∗ Real s t a r t o f the r o l e ∗)
81 event beginBparam (xA, hostX ) ;
82 (∗ Message 1 : Get the p u b l i c key c e r t i f i c a t e f o r the o ther hos t ∗)
83 out ( c , (xA, hostX ) ) ;
84 (∗ Message 2 ∗)
85 in ( c , ms : b i t s t r i n g ) ;
86 l et (pkX : pkey , =hostX ) = checks ign (ms , pkS ) in

87 (∗ Message 3 ∗)
88 new Na : nonce ;
89 out ( c , encrypt ( (Na , xA) , pkX ) ) ;
90 (∗ Message 6 ∗)
91 in ( c , m: b i t s t r i n g ) ;
92 l et (=Na , NX2: nonce ) = decrypt (m, skxA) in

93 event beg inB fu l l (xA, hostX , pkX , pkxA , Na , NX2) ;
94 (∗ Message 7 ∗)
95 out ( c , encrypt ( n on c e t o b i t s t r i n g (NX2) , pkX ) ) ;
96 (∗ OK ∗)
97 i f hostX = B | | hostX = A then

98 event endAparam(xA, hostX ) ;
99 event endAfu l l (xA, hostX , pkX , pkxA , Na , NX2) ;
100 out ( c , s encrypt ( secretANa , Na ) ) ;
101 out ( c , s encrypt ( secretANb , NX2) ) .
102
103 (∗ Role o f the responder wi th i d e n t i t y xB and s e c r e t key skxB ∗)
104 l et processResponder ( pkS : spkey , skA : skey , skB : skey ) =
105 (∗ The a t t a c k e r s t a r t s the responder by choos ing i d e n t i t y xB .
106 We check t ha t xB i s hones t ( i . e . i s A or B) . ∗)
107 in ( c , xB : host ) ;
108 i f xB = A | | xB = B then

109 l et skxB = i f xB = A then skA else skB in

110 l et pkxB = pk ( skxB ) in

111 (∗ Real s t a r t o f the r o l e ∗)
112 (∗ Message 3 ∗)
113 in ( c , m: b i t s t r i n g ) ;
114 l et (NY: nonce , hostY : host ) = decrypt (m, skxB ) in

115 event beginAparam ( hostY , xB ) ;
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116 (∗ Message 4 : Get the p u b l i c key c e r t i f i c a t e f o r the o ther hos t ∗)
117 out ( c , (xB , hostY ) ) ;
118 (∗ Message 5 ∗)
119 in ( c ,ms : b i t s t r i n g ) ;
120 l et (pkY : pkey ,=hostY ) = checks ign (ms , pkS ) in

121 (∗ Message 6 ∗)
122 new Nb: nonce ;
123 event beg inAfu l l ( hostY , xB , pkxB , pkY , NY, Nb) ;
124 out ( c , encrypt ( (NY, Nb) , pkY ) ) ;
125 (∗ Message 7 ∗)
126 in ( c , m3: b i t s t r i n g ) ;
127 i f non c e t o b i t s t r i n g (Nb) = decrypt (m3, skB ) then

128 (∗ OK ∗)
129 i f hostY = A | | hostY = B then

130 event endBparam( hostY , xB ) ;
131 event endBfu l l ( hostY , xB , pkxB , pkY , NY, Nb) ;
132 out ( c , s encrypt ( secretBNa , NY) ) ;
133 out ( c , s encrypt ( secretBNb , Nb ) ) .
134
135 (∗ Server ∗)
136 l et proces sS ( skS : s skey ) =
137 in ( c , ( a : host , b : host ) ) ;
138 get keys(=b , sb ) in

139 out ( c , s i gn ( ( sb , b ) , skS ) ) .
140
141 (∗ Key r e g i s t r a t i o n ∗)
142 l et processK =
143 in ( c , (h : host , k : pkey ) ) ;
144 i f h <> A && h <> B then insert keys (h , k ) .
145
146 (∗ Main ∗)
147 process

148 new skA : skey ; l et pkA = pk( skA) in out ( c , pkA ) ; insert keys (A, pkA ) ;
149 new skB : skey ; l et pkB = pk ( skB ) in out ( c , pkB ) ; insert keys (B, pkB ) ;
150 new skS : s skey ; l et pkS = spk ( skS ) in out ( c , pkS ) ;
151 (
152 (∗ Launch an unbounded number o f s e s s i on s o f the i n i t i a t o r ∗)
153 ( ! p r o c e s s I n i t i a t o r (pkS , skA , skB ) ) |
154 (∗ Launch an unbounded number o f s e s s i on s o f the responder ∗)
155 ( ! processResponder (pkS , skA , skB ) ) |
156 (∗ Launch an unbounded number o f s e s s i on s o f the s e r v e r ∗)
157 ( ! proces sS ( skS ) ) |
158 (∗ Key r e g i s t r a t i o n proces s ∗)
159 ( ! processK )
160 )

The main novelty of this script is that it allows Alice and Bob to play both roles of the initiator and
responder. To achieve this, we could simply duplicate the code, but it is possible to have more elegant
encodings. Above, we consider processes processInitiator and processResponder that take as argument
both skA and skB (since they can be played by Alice and Bob). Looking for instance at the initiator
(Lines 71–79), the adversary first starts the initiator by sending the identity xA of the principal playing
the role of the initiator and hostX of its interlocutor. Then, we verify that the initiator is honest, and
compute its secret key skxA (skA for A, skB for B) and its corresponding public key pkxA = pk(skxA).
We can then run the role as expected. We proceed similarly for the responder.

Other encodings are also possible. For instance, we could define a destructor choosekey by
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fun choosekey ( host , host , host , skey , skey ) : skey
reduc fora l l x1 : host , x2 : host , sk1 : skey , sk2 : skey ;

choosekey ( x1 , x1 , x2 , sk1 , sk2 ) = sk1
otherwise fora l l x1 : host , x2 : host , sk1 : skey , sk2 : skey ;

choosekey ( x2 , x1 , x2 , sk1 , sk2 ) = sk2 .

and let skxA be choosekey(xA, A, B, skA, skB) (if xA = A, it returns skA; if xA = B, it returns skB;
otherwise, it fails). The latter encoding is perhaps less intuitive, but it avoids internal code duplication
when ProVerif expands tests that appear in terms.

Three other points are worth noting:

• We use secrecy assumptions (Lines 30–33) to speed up the resolution process of ProVerif. These
lines inform ProVerif that the attacker cannot have the secret keys skA, skB, skS. This information
is checked by ProVerif, so that erroneous proofs cannot be obtained even with secrecy assumptions.
(See also Section 6.3.1.) Lines 30–33 can be removed without changing the results, ProVerif will
just be slightly slower.

• We set ignoreTypes to false (Lines 1–2). By default, ProVerif ignore all types during analysis.
However, for this script, it does not terminate with this default setting. By setting ignoreTypes =
false , the semantics of processes is changed to check the types. This setting makes it possible
to obtain termination. The known attack against this protocol is detected, but it might happen
that some type flaw attacks are undetected, when they appear when the types are not checked in
processes. More details on the ignoreTypes setting can be found in Section 6.2.2.

There are other ways of obtaining termination in this example, in particular by using a different
method for relating identities and keys with two function symbols, one that maps the key to the
identity, and one that maps the identity to the key. However, this method also has limitations: it
does not allow the adversary to create two principals with the same key. More information on this
method can be found in Section 6.3.2.

• We use two different levels of authentication: the events that end with “full” serve in proving
Lowe’s full agreement [Low97], that is, agreement on all parameters of the protocol (here, host
names, keys, and nonces). The events that end with “param” prove agreement on the host names
only.

As expected, ProVerif is able to prove the authentication of the responder and secrecy for the initiator;
whereas authentication of the initiator and secrecy for the responder fail. The reader is invited to modify
the protocol according to Lowe’s fix and examine the results produced by ProVerif. (A script for the
corrected protocol can be found in examples/pitype/secr-auth/NeedhamSchroederPK-corr.pv. Note
that the fixed protocol can be proved correct by ProVerif even when types are ignored.)

5.4 Variants of these security properties

In this section, we consider several security properties of Lowe’s corrected version of the Needham-
Schroeder public key protocol.

5.4.1 A variant of mutual authentication

In the previous definitions of authentication that we have considered, we require that internal parameters
of the protocol (such as nonces) are the same for the initiator and for the responder. However, in the
computational model, one generally uses a session identifier that is publicly computable (such as the
tuple of the messages of the protocol) as argument of events. One can also do that in ProVerif, as in the
following example (file docs/NeedhamSchroederPK-corr-mutual-auth.pv).

1 (∗ Queries ∗)
2 fun messtermI ( host , host ) : b i t s t r i n g [ data ] .
3 fun messtermR( host , host ) : b i t s t r i n g [ data ] .
4
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5 event termI ( host , host , b i t s t r i n g ) .
6 event ac c ep t s I ( host , host , b i t s t r i n g ) .
7 event acceptsR ( host , host , b i t s t r i n g ) .
8 event termR( host , host , b i t s t r i n g ) .
9

10 query x : host , m: b i t s t r i n g ;
11 inj−event ( termI (x ,B,m) ) ==> inj−event ( acceptsR (x ,B,m) ) .
12 query x : host , m: b i t s t r i n g ;
13 inj−event ( termR(A, x ,m) ) ==> inj−event ( a c c ep t s I (A, x ,m) ) .
14
15 (∗ Role o f the i n i t i a t o r wi th i d e n t i t y xA and s e c r e t key skxA ∗)
16 l et p r o c e s s I n i t i a t o r ( pkS : spkey , skA : skey , skB : skey ) =
17 (∗ The a t t a c k e r s t a r t s the i n i t i a t o r by choos ing i d e n t i t y xA ,
18 and i t s i n t e r l o c u t o r xB0 .
19 We check t ha t xA i s hones t ( i . e . i s A or B)
20 and ge t i t s corresponding key .
21 ∗)
22 in ( c , (xA : host , hostX : host ) ) ;
23 i f xA = A | | xA = B then

24 l et skxA = i f xA = A then skA else skB in

25 l et pkxA = pk ( skxA) in

26 (∗ Real s t a r t o f the r o l e ∗)
27 (∗ Message 1 : Get the p u b l i c key c e r t i f i c a t e f o r the o ther hos t ∗)
28 out ( c , (xA, hostX ) ) ;
29 (∗ Message 2 ∗)
30 in ( c , ms : b i t s t r i n g ) ;
31 l et (pkX : pkey , =hostX ) = checks ign (ms , pkS ) in

32 (∗ Message 3 ∗)
33 new Na : nonce ;
34 l et m3 = encrypt ( (Na , xA) , pkX) in

35 out ( c , m3) ;
36 (∗ Message 6 ∗)
37 in ( c , m: b i t s t r i n g ) ;
38 l et (=Na , NX2: nonce , =hostX ) = decrypt (m, skA) in

39 l et m7 = encrypt ( n on c e t o b i t s t r i n g (NX2) , pkX) in

40 event termI (xA, hostX , (m3, m) ) ;
41 event ac c ep t s I (xA, hostX , (m3, m, m7) ) ;
42 (∗ Message 7 ∗)
43 out ( c , (m7, messtermI (xA, hostX ) ) ) .
44
45 (∗ Role o f the responder wi th i d e n t i t y xB and s e c r e t key skxB ∗)
46 l et processResponder ( pkS : spkey , skA : skey , skB : skey ) =
47 (∗ The a t t a c k e r s t a r t s the responder by choos ing i d e n t i t y xB .
48 We check t ha t xB i s hones t ( i . e . i s A or B) . ∗)
49 in ( c , xB : host ) ;
50 i f xB = A | | xB = B then

51 l et skxB = i f xB = A then skA else skB in

52 l et pkxB = pk ( skxB ) in

53 (∗ Real s t a r t o f the r o l e ∗)
54 (∗ Message 3 ∗)
55 in ( c , m: b i t s t r i n g ) ;
56 l et (NY: nonce , hostY : host ) = decrypt (m, skxB ) in

57 (∗ Message 4 : Get the p u b l i c key c e r t i f i c a t e f o r the o ther hos t ∗)
58 out ( c , (xB , hostY ) ) ;
59 (∗ Message 5 ∗)
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60 in ( c ,ms : b i t s t r i n g ) ;
61 l et (pkY : pkey ,=hostY ) = checks ign (ms , pkS ) in

62 (∗ Message 6 ∗)
63 new Nb: nonce ;
64 l et m6 = encrypt ( (NY, Nb, xB) , pkY) in

65 event acceptsR ( hostY , xB , (m, m6) ) ;
66 out ( c , m6) ;
67 (∗ Message 7 ∗)
68 in ( c , m3: b i t s t r i n g ) ;
69 i f non c e t o b i t s t r i n g (Nb) = decrypt (m3, skB ) then

70 event termR( hostY , xB , (m, m6, m3) ) ;
71 out ( c , messtermR( hostY , xB ) ) .
72
73 (∗ Server ∗)
74 l et proces sS ( skS : s skey ) =
75 in ( c , ( a : host , b : host ) ) ;
76 get keys(=b , sb ) in

77 out ( c , s i gn ( ( sb , b ) , skS ) ) .
78
79 (∗ Key r e g i s t r a t i o n ∗)
80 l et processK =
81 in ( c , (h : host , k : pkey ) ) ;
82 i f h <> A && h <> B then insert keys (h , k ) .
83
84 (∗ S ta r t proces s ∗)
85 process

86 new skA : skey ; l et pkA = pk( skA) in out ( c , pkA ) ; insert keys (A, pkA ) ;
87 new skB : skey ; l et pkB = pk ( skB ) in out ( c , pkB ) ; insert keys (B, pkB ) ;
88 new skS : s skey ; l et pkS = spk ( skS ) in out ( c , pkS ) ;
89 (
90 (∗ Launch an unbounded number o f s e s s i on s o f the i n i t i a t o r ∗)
91 ( ! p r o c e s s I n i t i a t o r (pkS , skA , skB ) ) |
92 (∗ Launch an unbounded number o f s e s s i on s o f the responder ∗)
93 ( ! processResponder (pkS , skA , skB ) ) |
94 (∗ Launch an unbounded number o f s e s s i on s o f the s e r v e r ∗)
95 ( ! proces sS ( skS ) ) |
96 (∗ Key r e g i s t r a t i o n proces s ∗)
97 ( ! processK )
98 )

The query

10 query x : host , m: b i t s t r i n g ;
11 inj−event ( termI (x ,B,m) ) ==> inj−event ( acceptsR (x ,B,m) ) .

corresponds to the authentication of the responder B to the initiator x: when the initiator x terminates a
session apparently with B (event termI(x,B,m), executed at Line 40, when the initiator terminates, after
receiving its last message, message 6), the responder B has accepted with x (event acceptsR(x,B,m),
executed at Line 65, when the responder accepts, just before sending message 6). We use a fixed value B
for the name of the responder, and not a variable, because if a variable were used, the initiator might run
a session with a dishonest participant included in the adversary, and in this case, it is perfectly ok that
the event acceptsR is not executed. Since the initiator is executed with identities A and B, x is either A
or B, so the query above proves correct authentication of the responder B to the initiator x when x is A
and when it is B. The same property for the responder A holds by symmetry, swapping A and B.

Similarly, the query

12 query x : host , m: b i t s t r i n g ;
13 inj−event ( termR(A, x ,m) ) ==> inj−event ( a c c ep t s I (A, x ,m) ) .
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corresponds to the authentication of the initiator A to the responder x: when the responder x terminates
a session apparently with A (event termR(A,x,m), executed at Line 70, when the responder terminates,
after receiving its last message, message 7), the initiator A has accepted with x (event acceptsI(A,x,m),
executed at Line 41, when the initiator accepts, just before sending message 7).

The position of events follows Figure 3.4. The events termR and acceptsI take as arguments the host
names of the initiator and the responder, and the tuples of messages exchanged between the initiator
and the responder. (Messages sent to or received from the server to obtain the certificates are ignored.)
Because the last message is from the initiator to the responder, that message is not known to the
responder when it accepts, so that message is omitted from the arguments of the events acceptsR and
termI.

5.4.2 Authenticated key exchange

In the computational model, the security of an authenticated key exchange protocol is typically shown
by proving, in addition to mutual authentication, that the exchanged key is indistinguishable from a
random key. More precisely, in the real-or-random model [AFP06], one allows the adversary to perform
several test queries, which either return the real key or a fresh random key, and these two cases must
be indistinguishable. When the test query is performed on a session between a honest and a dishonest
participant, the returned key is always the real one. When the test query is performed several times on
the same session, or on the partner session (that is, the session of the interlocutor that has the same
session identifier), it returns the same key (whether real or random). Taking into account partnering in
the definition of test queries is rather tricky, so we have developed an alternative characterization that
does not require partnering [Bla07].

• We use events similar to those for mutual authentication, except that termR and acceptsI take the
exchanged key as an additional argument. We prove the following properties:

query x : host , m: b i t s t r i n g ;
inj−event ( termI (x ,B,m) ) ==> inj−event ( acceptsR (x ,B,m) ) .

query x : host , k : nonce , m: b i t s t r i n g ;
inj−event ( termR(A, x , k ,m) ) ==> inj−event ( a c c ep t s I (A, x , k ,m) ) .

query x : host , k : nonce , k ’ : nonce , m: b i t s t r i n g ;
event ( termR(A, x , k ,m) ) && event ( a c c ep t s I (A, x , k ’ ,m) ) ==> k = k ’ .

• When the initiator or the responder execute a session with a dishonest participant, they output
the exchanged key. (This key is also output by the test queries in this case.) We show the secrecy
of the keys established by the initiator when it runs sessions with a honest responder, in the sense
that these keys are indistinguishable from independent random numbers.

The first two correspondences imply mutual authentication. The real-or-random indistinguishability of
the key is obtained by combining the last two correspondences with the secrecy of the initiator’s key.
Intuitively, the correspondences allow us to show that each responder’s key in a session with a honest
initiator is in fact also an initiator’s key (which we can find by looking for the same session identifier), so
showing that the initiator’s key cannot be distinguished from independent random numbers is sufficient
to show the secrecy of the key.

Outputting the exchanged key in a session with a dishonest interlocutor allows to detect Unknown
Key Share (UKS) attacks [DvOW92], in which an initiator A believes he shares a key with a responder
B, but B believes he shares that key with a dishonest C. This key is then output to the adversary, so
the secrecy of the initiator’s key is broken. However, bilateral UKS attacks [CT08], in which A shares a
key with a dishonest C and B shares the same key with a dishonest D, may remain undetected under
this definition of key exchange. These attacks can be detected by testing the following correspondence:

query x : host , y : host , x ’ : host , y ’ : host , k : nonce , k ’ : nonce ,
m: b i t s t r i n g , m’ : b i t s t r i n g ;
event ( termR(x , y , k ,m) ) && event ( a c c ep t s I (x ’ , y ’ , k ,m’ ) ) ==> x = x ’ && y = y ’ .

to verify that, if two sessions terminate with the same key, then they are between the same hosts (and
we could additionally verify m = m’ to make sure that these sessions have the same session identifiers).
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The following script aims at verifying this notion of authenticated key exchange, assuming that the
exchanged key is Na (file docs/NeedhamSchroederPK-corr-ake.pv).

1 (∗ Queries ∗)
2 free secretA : b i t s t r i n g [ private ] .
3 query a t tacke r ( secretA ) .
4
5 fun messtermI ( host , host ) : b i t s t r i n g [ data ] .
6 fun messtermR( host , host ) : b i t s t r i n g [ data ] .
7
8 event termI ( host , host , b i t s t r i n g ) .
9 event ac c ep t s I ( host , host , nonce , b i t s t r i n g ) .

10 event acceptsR ( host , host , b i t s t r i n g ) .
11 event termR( host , host , nonce , b i t s t r i n g ) .
12
13 query x : host , m: b i t s t r i n g ;
14 inj−event ( termI (x ,B,m) ) ==> inj−event ( acceptsR (x ,B,m) ) .
15 query x : host , k : nonce , m: b i t s t r i n g ;
16 inj−event ( termR(A, x , k ,m) ) ==> inj−event ( a c c ep t s I (A, x , k ,m) ) .
17
18 (∗ We would l i k e to perform a query
19 query x : host , k : nonce , k ’ : nonce , m: b i t s t r i n g ;
20 event ( termR(A, x , k ,m)) && event ( a c c ep t s I (A, x , k ’ ,m)) ==> k = k ’ .
21 but con junc t ions b e f o r e ==> are not supported , so we encode t h i s query . ∗)
22 table t ab l e a c c e p t s I ( host , host , nonce , b i t s t r i n g ) .
23 table tabletermR ( host , host , nonce , b i t s t r i n g ) .
24 event termIR ( host , host , nonce , b i t s t r i n g , host , host , nonce , b i t s t r i n g ) .
25
26 query x : host , k : nonce , k ’ : nonce , m: b i t s t r i n g ;
27 event ( termIR (A, x , k ,m,A, x , k ’ ,m) ) ==> k = k ’ .
28
29 (∗ We encode the query f o r d e t e c t i n g b i l a t e r a l UKS a t t a c k s
30 query x : host , y : host , x ’ : host , y ’ : host , k : nonce , k ’ : nonce ,
31 m: b i t s t r i n g , m’ : b i t s t r i n g ;
32 event ( termR(x , y , k ,m)) && event ( a c c ep t s I ( x ’ , y ’ , k ,m’ ) ) ==> x = x ’ && y = y ’ .
33 us ing the same techn i que as f o r the query above . ∗)
34 query x : host , y : host , x ’ : host , y ’ : host , k : nonce , k ’ : nonce ,
35 m: b i t s t r i n g , m’ : b i t s t r i n g ;
36 event ( termIR (x , y , k ,m, x ’ , y ’ , k ,m’ ) ) ==> x = x ’ && y = y ’ .
37
38 (∗ Role o f the i n i t i a t o r wi th i d e n t i t y xA and s e c r e t key skxA ∗)
39 l et p r o c e s s I n i t i a t o r ( pkS : spkey , skA : skey , skB : skey ) =
40 (∗ The a t t a c k e r s t a r t s the i n i t i a t o r by choos ing i d e n t i t y xA ,
41 and i t s i n t e r l o c u t o r xB0 .
42 We check t ha t xA i s hones t ( i . e . i s A or B)
43 and ge t i t s corresponding key .
44 ∗)
45 in ( c , (xA : host , hostX : host ) ) ;
46 i f xA = A | | xA = B then

47 l et skxA = i f xA = A then skA else skB in

48 l et pkxA = pk ( skxA) in

49 (∗ Real s t a r t o f the r o l e ∗)
50 (∗ Message 1 : Get the p u b l i c key c e r t i f i c a t e f o r the o ther hos t ∗)
51 out ( c , (xA, hostX ) ) ;
52 (∗ Message 2 ∗)
53 in ( c , ms : b i t s t r i n g ) ;
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54 l et (pkX : pkey , =hostX ) = checks ign (ms , pkS ) in

55 (∗ Message 3 ∗)
56 new Na : nonce ;
57 l et m3 = encrypt ( (Na , xA) , pkX) in

58 out ( c , m3) ;
59 (∗ Message 6 ∗)
60 in ( c , m: b i t s t r i n g ) ;
61 l et (=Na , NX2: nonce , =hostX ) = decrypt (m, skA) in

62 l et m7 = encrypt ( n on c e t o b i t s t r i n g (NX2) , pkX) in

63 event termI (xA, hostX , (m3, m) ) ;
64 event ac c ep t s I (xA, hostX , Na , (m3, m, m7) ) ;
65 insert t ab l e a c c e p t s I (xA, hostX , Na , (m3, m, m7) ) ;
66 (∗ Message 7 ∗)
67 i f hostX = A | | hostX = B then

68 (
69 out ( c , s encrypt ( secretA , Na ) ) ;
70 out ( c , (m7, messtermI (xA, hostX ) ) )
71 )
72 else

73 (
74 out ( c , Na ) ;
75 out ( c , (m7, messtermI (xA, hostX ) ) )
76 ) .
77
78 (∗ Role o f the responder wi th i d e n t i t y xB and s e c r e t key skxB ∗)
79 l et processResponder ( pkS : spkey , skA : skey , skB : skey ) =
80 (∗ The a t t a c k e r s t a r t s the responder by choos ing i d e n t i t y xB .
81 We check t ha t xB i s hones t ( i . e . i s A or B) . ∗)
82 in ( c , xB : host ) ;
83 i f xB = A | | xB = B then

84 l et skxB = i f xB = A then skA else skB in

85 l et pkxB = pk ( skxB ) in

86 (∗ Real s t a r t o f the r o l e ∗)
87 (∗ Message 3 ∗)
88 in ( c , m: b i t s t r i n g ) ;
89 l et (NY: nonce , hostY : host ) = decrypt (m, skxB ) in

90 (∗ Message 4 : Get the p u b l i c key c e r t i f i c a t e f o r the o ther hos t ∗)
91 out ( c , (xB , hostY ) ) ;
92 (∗ Message 5 ∗)
93 in ( c ,ms : b i t s t r i n g ) ;
94 l et (pkY : pkey ,=hostY ) = checks ign (ms , pkS ) in

95 (∗ Message 6 ∗)
96 new Nb: nonce ;
97 l et m6 = encrypt ( (NY, Nb, xB) , pkY) in

98 event acceptsR ( hostY , xB , (m, m6) ) ;
99 out ( c , m6) ;
100 (∗ Message 7 ∗)
101 in ( c , m3: b i t s t r i n g ) ;
102 i f non c e t o b i t s t r i n g (Nb) = decrypt (m3, skB ) then

103 event termR( hostY , xB , NY, (m, m6, m3) ) ;
104 insert tabletermR ( hostY , xB , NY, (m, m6, m3) ) ;
105 i f hostY = A | | hostY = B then

106 out ( c , messtermR( hostY , xB) )
107 else

108 (
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109 out ( c , NY) ;
110 out ( c , messtermR( hostY , xB) )
111 ) .
112
113 (∗ Server ∗)
114 l et proces sS ( skS : s skey ) =
115 in ( c , ( a : host , b : host ) ) ;
116 get keys(=b , sb ) in

117 out ( c , s i gn ( ( sb , b ) , skS ) ) .
118
119 (∗ Key r e g i s t r a t i o n ∗)
120 l et processK =
121 in ( c , (h : host , k : pkey ) ) ;
122 i f h <> A && h <> B then insert keys (h , k ) .
123
124 (∗ Process used f o r encoding the qu e r i e s wi th con junc t ions
125 event ( termR ( . . . ) ) && event ( a c c ep t s I ( . . . ) ) ==> . . .
126 ∗)
127 l et processQ =
128 ! get t ab l e a c c e p t s I ( hI , hI ’ , kI ,mI) in get tabletermR (hR,hR’ , kR ,mR) in

129 event termIR ( hI , hI ’ , kI ,mI , hR,hR’ , kR,mR) .
130
131 (∗ S ta r t proces s ∗)
132 process

133 new skA : skey ; l et pkA = pk( skA) in out ( c , pkA ) ; insert keys (A, pkA ) ;
134 new skB : skey ; l et pkB = pk ( skB ) in out ( c , pkB ) ; insert keys (B, pkB ) ;
135 new skS : s skey ; l et pkS = spk ( skS ) in out ( c , pkS ) ;
136 (
137 (∗ Launch an unbounded number o f s e s s i on s o f the i n i t i a t o r ∗)
138 ( ! p r o c e s s I n i t i a t o r (pkS , skA , skB ) ) |
139 (∗ Launch an unbounded number o f s e s s i on s o f the responder ∗)
140 ( ! processResponder (pkS , skA , skB ) ) |
141 (∗ Launch an unbounded number o f s e s s i on s o f the s e r v e r ∗)
142 ( ! proces sS ( skS ) ) |
143 (∗ Key r e g i s t r a t i o n proces s ∗)
144 ( ! processK ) |
145 (∗ Process used f o r encoding a query wi th && be f o r e ==> ∗)
146 processQ
147 )

The correspondences with conjunctions of events before the arrow ==> cannot be verified directly in
ProVerif. We apply the technique outlined page 41 to encode them: we record events termR in table
tabletermR and events acceptsI in table tableacceptsI. The process processQ (lines 127-129) executes
event termIR when events have been recorded in both tables. We can then use event(termIR(A, x, k,
m, A, x, k’, m)) instead of the conjunction event(termR(A, x, k, m)) && event(acceptsI(A, x, k’, m))
and event(termIR(x, y, k, m, x’, y’, k, m’)) instead of event(termR(x, y, k, m)) && event(acceptsI(x’,
y’, k, m’)). ProVerif finds a bilateral UKS attack: if C as responder runs a session with A, it gets Na,
then D as initiator can use the same nonce Na in a session with responder B, thus obtaining two sessions,
between A and C and between D and B, that share the same key Na. (Such an attack appears more
generally when the key is determined by a single participant of the protocol.) The other properties are
proved by ProVerif.

The above script verifies syntactic secrecy of the initiator’s key Na. To be even closer to the compu-
tational definition, we can verify its secrecy using the real-or-random secrecy notion (page 46), as in the
following script (file docs/NeedhamSchroederPK-corr-ake-RoR.pv):

1 (∗ Termination messages ∗)
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2 fun messtermI ( host , host ) : b i t s t r i n g [ data ] .
3 fun messtermR( host , host ) : b i t s t r i n g [ data ] .
4
5 set ignoreTypes = f a l s e .
6
7 (∗ Role o f the i n i t i a t o r wi th i d e n t i t y xA and s e c r e t key skxA ∗)
8 l et p r o c e s s I n i t i a t o r ( pkS : spkey , skA : skey , skB : skey ) =
9 (∗ The a t t a c k e r s t a r t s the i n i t i a t o r by choos ing i d e n t i t y xA ,

10 and i t s i n t e r l o c u t o r xB0 .
11 We check t ha t xA i s hones t ( i . e . i s A or B)
12 and ge t i t s corresponding key .
13 ∗)
14 in ( c , (xA : host , hostX : host ) ) ;
15 i f xA = A | | xA = B then

16 l et skxA = i f xA = A then skA else skB in

17 l et pkxA = pk ( skxA) in

18 (∗ Real s t a r t o f the r o l e ∗)
19 (∗ Message 1 : Get the p u b l i c key c e r t i f i c a t e f o r the o ther hos t ∗)
20 out ( c , (xA, hostX ) ) ;
21 (∗ Message 2 ∗)
22 in ( c , ms : b i t s t r i n g ) ;
23 l et (pkX : pkey , =hostX ) = checks ign (ms , pkS ) in

24 (∗ Message 3 ∗)
25 new Na : nonce ;
26 l et m3 = encrypt ( (Na , xA) , pkX) in

27 out ( c , m3) ;
28 (∗ Message 6 ∗)
29 in ( c , m: b i t s t r i n g ) ;
30 l et (=Na , NX2: nonce , =hostX ) = decrypt (m, skA) in

31 l et m7 = encrypt ( n on c e t o b i t s t r i n g (NX2) , pkX) in

32 (∗ Message 7 ∗)
33 i f hostX = A | | hostX = B then

34 (
35 new random : nonce ;
36 out ( c , choice [Na , random ] ) ;
37 out ( c , (m7, messtermI (xA, hostX ) ) )
38 )
39 else

40 (
41 out ( c , Na ) ;
42 out ( c , (m7, messtermI (xA, hostX ) ) )
43 ) .
44
45 (∗ Role o f the responder wi th i d e n t i t y xB and s e c r e t key skxB ∗)
46 l et processResponder ( pkS : spkey , skA : skey , skB : skey ) =
47 (∗ The a t t a c k e r s t a r t s the responder by choos ing i d e n t i t y xB .
48 We check t ha t xB i s hones t ( i . e . i s A or B) . ∗)
49 in ( c , xB : host ) ;
50 i f xB = A | | xB = B then

51 l et skxB = i f xB = A then skA else skB in

52 l et pkxB = pk ( skxB ) in

53 (∗ Real s t a r t o f the r o l e ∗)
54 (∗ Message 3 ∗)
55 in ( c , m: b i t s t r i n g ) ;
56 l et (NY: nonce , hostY : host ) = decrypt (m, skxB ) in
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57 (∗ Message 4 : Get the p u b l i c key c e r t i f i c a t e f o r the o ther hos t ∗)
58 out ( c , (xB , hostY ) ) ;
59 (∗ Message 5 ∗)
60 in ( c ,ms : b i t s t r i n g ) ;
61 l et (pkY : pkey ,=hostY ) = checks ign (ms , pkS ) in

62 (∗ Message 6 ∗)
63 new Nb: nonce ;
64 l et m6 = encrypt ( (NY, Nb, xB) , pkY) in

65 out ( c , m6) ;
66 (∗ Message 7 ∗)
67 in ( c , m3: b i t s t r i n g ) ;
68 i f non c e t o b i t s t r i n g (Nb) = decrypt (m3, skB ) then

69 i f hostY = A | | hostY = B then

70 out ( c , messtermR( hostY , xB) )
71 else

72 (
73 out ( c , NY) ;
74 out ( c , messtermR( hostY , xB) )
75 ) .
76
77 (∗ Server ∗)
78 l et proces sS ( skS : s skey ) =
79 in ( c , ( a : host , b : host ) ) ;
80 get keys(=b , sb ) in

81 out ( c , s i gn ( ( sb , b ) , skS ) ) .
82
83 (∗ Key r e g i s t r a t i o n ∗)
84 l et processK =
85 in ( c , (h : host , k : pkey ) ) ;
86 i f h <> A && h <> B then insert keys (h , k ) .
87
88 (∗ S ta r t proces s ∗)
89 process

90 new skA : skey ; l et pkA = pk( skA) in out ( c , pkA ) ; insert keys (A, pkA ) ;
91 new skB : skey ; l et pkB = pk ( skB ) in out ( c , pkB ) ; insert keys (B, pkB ) ;
92 new skS : s skey ; l et pkS = spk ( skS ) in out ( c , pkS ) ;
93 (
94 (∗ Launch an unbounded number o f s e s s i on s o f the i n i t i a t o r ∗)
95 ( ! p r o c e s s I n i t i a t o r (pkS , skA , skB ) ) |
96 (∗ Launch an unbounded number o f s e s s i on s o f the responder ∗)
97 ( ! processResponder (pkS , skA , skB ) ) |
98 (∗ Launch an unbounded number o f s e s s i on s o f the s e r v e r ∗)
99 ( ! proces sS ( skS ) ) |
100 (∗ Key r e g i s t r a t i o n proces s ∗)
101 ( ! processK )
102 )

Line 36 outputs either the real key Na or a fresh random key, and the goal is to prove that the adversary
cannot distinguish these two situations. In order to obtain termination, we require that all code including
the adversary be well-typed (Line 5). This prevents in particular the generation of certificates in which
the host names are themselves nested signatures of unbounded depth. Unfortunately, ProVerif finds
a false attack in which the output key is used to build message 3 (either encrypt((Na, A), pkB) or
encrypt((random, A), pkB)), send it to the responder, which replies with message 6 (that is, encrypt((Na,
Nb, A), pkA) or encrypt((random, Nb, A), pkA)), which is accepted by the initiator if and only if the
key is the real key Na.

A similar verification can be done with other possible keys (for instance, Nb, h(Na), h(Nb), h(Na,Nb)
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where h is a hash function). We leave these verifications to the reader and just note that the false attack
above disappears for the key h(Na) (but we still have to restrict ourselves to a well-typed adversary).
In order to obtain this result, a trick is necessary: if random is generated at the end of the protocol,
ProVerif represents it internally as a function of the previously received messages, including message 6.
This leads to a false attack in which two different values of random (generated after receiving different
messages 6) are associated to the same Na. This false attack can be eliminated by moving the generation
of random just after the generation of Na.

5.4.3 Full ordering of the messages

We can also show that, if a responder terminates the protocol with a honest initiator, then all mes-
sages of the protocol between the initiator and the responder have been exchanged in the right order.
(We ignore messages sent to or received from the server.) This is shown in the following script (file
docs/NeedhamSchroederPK-corr-all-messages.pv).

1 (∗ Queries ∗)
2 event endB( host , host , pkey , pkey , nonce , nonce ) .
3 event e3 ( host , host , pkey , pkey , nonce , nonce ) .
4 event e2 ( host , host , pkey , pkey , nonce , nonce ) .
5 event e1 ( host , host , pkey , pkey , nonce ) .
6
7 query y : host , pkx : pkey , pky : pkey , nx : nonce , ny : nonce ;
8 inj−event ( endB(A, y , pkx , pky , nx , ny ) ) ==>
9 ( inj−event ( e3 (A, y , pkx , pky , nx , ny ) ) ==>

10 ( inj−event ( e2 (A, y , pkx , pky , nx , ny ) ) &&
11 inj−event ( e1 (A, y , pkx , pky , nx ) ) ) ) .
12
13 (∗ Role o f the i n i t i a t o r wi th i d e n t i t y xA and s e c r e t key skxA ∗)
14 l et p r o c e s s I n i t i a t o r ( pkS : spkey , skA : skey , skB : skey ) =
15 (∗ The a t t a c k e r s t a r t s the i n i t i a t o r by choos ing i d e n t i t y xA ,
16 and i t s i n t e r l o c u t o r xB0 .
17 We check t ha t xA i s hones t ( i . e . i s A or B)
18 and ge t i t s corresponding key .
19 ∗)
20 in ( c , (xA : host , hostX : host ) ) ;
21 i f xA = A | | xA = B then

22 l et skxA = i f xA = A then skA else skB in

23 l et pkxA = pk ( skxA) in

24 (∗ Real s t a r t o f the r o l e ∗)
25 (∗ Message 1 : Get the p u b l i c key c e r t i f i c a t e f o r the o ther hos t ∗)
26 out ( c , (xA, hostX ) ) ;
27 (∗ Message 2 ∗)
28 in ( c , ms : b i t s t r i n g ) ;
29 l et (pkX : pkey , =hostX ) = checks ign (ms , pkS ) in

30 (∗ Message 3 ∗)
31 new Na : nonce ;
32 event e1 (xA, hostX , pkxA , pkX , Na ) ;
33 out ( c , encrypt ( (Na , xA) , pkX ) ) ;
34 (∗ Message 6 ∗)
35 in ( c , m: b i t s t r i n g ) ;
36 l et (=Na , NX2: nonce , =hostX ) = decrypt (m, skA) in

37 l et m7 = encrypt ( n on c e t o b i t s t r i n g (NX2) , pkX) in

38 event e3 (xA, hostX , pkxA , pkX , Na , NX2) ;
39 (∗ Message 7 ∗)
40 out ( c , m7) .
41
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42 (∗ Role o f the responder wi th i d e n t i t y xB and s e c r e t key skxB ∗)
43 l et processResponder ( pkS : spkey , skA : skey , skB : skey ) =
44 (∗ The a t t a c k e r s t a r t s the responder by choos ing i d e n t i t y xB .
45 We check t ha t xB i s hones t ( i . e . i s A or B) . ∗)
46 in ( c , xB : host ) ;
47 i f xB = A | | xB = B then

48 l et skxB = i f xB = A then skA else skB in

49 l et pkxB = pk ( skxB ) in

50 (∗ Real s t a r t o f the r o l e ∗)
51 (∗ Message 3 ∗)
52 in ( c , m: b i t s t r i n g ) ;
53 l et (NY: nonce , hostY : host ) = decrypt (m, skxB ) in

54 (∗ Message 4 : Get the p u b l i c key c e r t i f i c a t e f o r the o ther hos t ∗)
55 out ( c , (xB , hostY ) ) ;
56 (∗ Message 5 ∗)
57 in ( c ,ms : b i t s t r i n g ) ;
58 l et (pkY : pkey ,=hostY ) = checks ign (ms , pkS ) in

59 (∗ Message 6 ∗)
60 new Nb: nonce ;
61 event e2 ( hostY , xB , pkY , pkxB , NY, Nb) ;
62 out ( c , encrypt ( (NY, Nb, xB) , pkY ) ) ;
63 (∗ Message 7 ∗)
64 in ( c , m3: b i t s t r i n g ) ;
65 i f non c e t o b i t s t r i n g (Nb) = decrypt (m3, skB ) then

66 event endB( hostY , xB , pkY , pkxB , NY, Nb) .
67
68 (∗ Server ∗)
69 l et proces sS ( skS : s skey ) =
70 in ( c , ( a : host , b : host ) ) ;
71 get keys(=b , sb ) in

72 out ( c , s i gn ( ( sb , b ) , skS ) ) .
73
74 (∗ Key r e g i s t r a t i o n ∗)
75 l et processK =
76 in ( c , (h : host , k : pkey ) ) ;
77 i f h <> A && h <> B then insert keys (h , k ) .
78
79 (∗ S ta r t proces s ∗)
80 process

81 new skA : skey ; l et pkA = pk( skA) in out ( c , pkA ) ; insert keys (A, pkA ) ;
82 new skB : skey ; l et pkB = pk ( skB ) in out ( c , pkB ) ; insert keys (B, pkB ) ;
83 new skS : s skey ; l et pkS = spk ( skS ) in out ( c , pkS ) ;
84 (
85 (∗ Launch an unbounded number o f s e s s i on s o f the i n i t i a t o r ∗)
86 ( ! p r o c e s s I n i t i a t o r (pkS , skA , skB ) ) |
87 (∗ Launch an unbounded number o f s e s s i on s o f the responder ∗)
88 ( ! processResponder (pkS , skA , skB ) ) |
89 (∗ Launch an unbounded number o f s e s s i on s o f the s e r v e r ∗)
90 ( ! proces sS ( skS ) ) |
91 (∗ Key r e g i s t r a t i o n proces s ∗)
92 ( ! processK )
93 )

The event endB (Line 66) means that the responder has completed the protocol, e3 (Line 38) that the
initiator received message 6 and sent message 7, e2 (Line 61) that the responder received message 3
and sent message 6, e1 (Line 32) that the initiator sent message 3. These events take as arguments all
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parameters of the protocol: the host names, their public keys, and the nonces, except e1 which cannot
take Nb as argument since it has not been chosen yet when e1 is executed. We would like to prove the
correspondence

inj−event ( endB(A, y , pkx , pky , nx , ny ) ) ==>
( inj−event ( e3 (A, y , pkx , pky , nx , ny ) ) ==>
( inj−event ( e2 (A, y , pkx , pky , nx , ny ) ) ==>
inj−event ( e1 (A, y , pkx , pky , nx ) ) ) ) .

However, the direct proof of this correspondence in ProVerif fails because message 3 can be replayed,
yielding several e2 for a single e1 as outlined page 42. We use the solution suggested there: we prove the
correspondence

inj−event ( endB(A, y , pkx , pky , nx , ny ) ) ==>
( inj−event ( e3 (A, y , pkx , pky , nx , ny ) ) ==>
( inj−event ( e2 (A, y , pkx , pky , nx , ny ) ) &&
inj−event ( e1 (A, y , pkx , pky , nx ) ) ) ) .

instead (lines 7-11) and conclude the desired correspondence by noticing that event e2 which has Na as
argument cannot be executed before Na has been sent, that is, before e1 has been executed.
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Chapter 6

Advanced reference

This chapter introduces ProVerif’s advanced capabilities. We provide the complete grammar in Ap-
pendix A.

6.1 Advanced modeling features and security properties

6.1.1 Predicates

ProVerif supports predicates defined by Horn clauses as a means of performing complex tests or computa-
tions. Such predicates are convenient because they can easily be encoded into the internal representation
of ProVerif which also uses clauses. Predicates are defined as follows:

pred p(t1, . . . , tk) .

declares a predicate p of arity k that takes arguments of types t1, . . . , tk. The predicates attacker,
mess, ev, and evinj are reserved for internal use by ProVerif and cannot be declared by the user. The
declaration

clauses C1; . . . ;Cn .

declares the clauses C1, . . . , Cn which define the meaning of predicates. Clauses are built from facts which
can be p(M1, . . . ,Mk) for some predicate declared by pred, M1 = M2, or M1 <> M2. The clauses Ci

can take the following forms:

• f o ra l l x1 : t1, . . . , xn : tn ; F

which means that the fact F holds for all values of the variables x1, . . . , xn of type t1, . . . , tn
respectively; F must be of the form p(M1, . . . ,Mk).

• f o ra l l x1 : t1, . . . , xn : tn ; F1 && . . . && Fm −> F

which means that F1, . . . , and Fm imply F for all values of the variables x1, . . . , xn of type t1, . . . , tn
respectively; F must be of the form p(M1, . . . ,Mk); F1, . . . , Fm can be any fact.

In all clauses, the fact F is considered to hold only if its arguments do not fail and when the arguments
of the facts in the hypothesis of the clause do not fail: for facts p(M1, . . . ,Mk), M1, . . . ,Mk do not fail,
for equalities M1 = M2 and inequalities M1 <> M2, M1 and M2 do not fail.

Additionally, ProVerif allows the following equivalence declaration in place of a clause

f o ra l l x1 : t1, . . . , xn : tn ; F1 && . . . && Fm <−> F

which means that F1, . . . , and Fm hold if and only if F holds; F1, . . . , Fm, F must be of the form
p(M1, . . . ,Mk). Moreover, σFi must be of smaller size than σF for all substitutions σ and two facts
F of different equivalence declarations must not unify. (ProVerif will check these conditions.) This
equivalence declaration can be considered as an abbreviation for the clauses

75
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f o ra l l x1 : t1, . . . , xn : tn ; F1 && . . . && Fm −> F
f o ra l l x1 : t1, . . . , xn : tn ; F −> Fi (1 ≤ i ≤ m)

but it further enables the replacement of σF with the equivalent facts σF1 && . . .&& σFm in all clauses.
This replacement may speed up the resolution process, and generalizes the replacement performed for
data constructors.

The equivalence declaration

f o ra l l x1 : t1, . . . , xn : tn ; F1 && . . . && Fm <=> F

is similar to the previous one but additionally prevents resolving upon facts that unify with F . (This
affects the internal resolution algorithm of ProVerif: it may speed up the algorithm, or allow it to
terminate, but does not change the meaning of the clause.)

In all these clauses, all variables of F1, . . . , Fm, F must be universally quantified by forall x1 : t1, . . . ,
xn : tn. When F1, . . . , Fm, F contain no variables, the part forall x1 : t1, . . . , xn : tn; can be omitted.
In forall x1 : t1, . . . , xn : tn, the types t1, . . . , tn can be either just a type identifier, or of the form
t or fail, which means that the considered variable is allowed to take the special value fail in addition
to the values of type t.

Finally, the declaration

elimtrue x1 : t1, . . . , xn : tn ; p(M1, . . . ,Mk) .

means that for all values of the variables x1, . . . , xn, the fact p(M1, . . . ,Mk) holds, like the declaration
clauses forall x1 : t1, . . . , xn : tn; p(M1, . . . ,Mk). However, it additionally enables an optimization: in
a clause R = F ′ && H −> C, if F ′ unifies with F with most general unifier σu and all variables of F ′

modified by σu do not occur in the rest of R then the hypothesis F ′ can be removed: R is transformed
into H −> C, by resolving with F . As above, the types t1, . . . , tn can be either just a type identifier,
or of the form t or fail.

Predicate evaluation. Predicates can be used in if tests. As a trivial example, consider the script:

pred p( b i t s t r i n g , b i t s t r i n g ) .

elimtrue x : b i t s t r i n g , y : b i t s t r i n g ; p (x , y ) .

event e .
query event ( e ) .

process new m: b i t s t r i n g ; new n : b i t s t r i n g ; i f p(m, n) then event e

in which ProVerif demonstrates the reachability of event e.
Predicates can also be evaluated using the let ... suchthat construct:

l et x1 : t1, . . . , xn : tn suchthat p(M1, . . . ,Mk) in P else Q

where M1, . . . ,Mk are terms built over variables x1, . . . , xn of type t1, . . . , tn and other terms. If there ex-
ists a binding of x1, . . . , xn such that the fact p(M1, . . . ,Mk) holds, then P is executed (with the variables
x1, . . . , xn bound inside P ); if no such binding can be achieved, then Q is executed. As usual, Q may be
omitted when it is the null process. When there are several suitable bindings, one possibility is chosen (but
ProVerif considers all possibilities when reasoning). Note that the let ... suchthat construct does not
allow an empty set of variables x1, . . . , xn; in this case, the construct if p(M1, . . . ,Mk) then P else Q
should be used instead.

The let ... suchthat construct is allowed in enriched terms (see Section 4.1.3) as well as in processes.
Note that there is an implementability condition on predicates, to make sure that the values of

x1, . . . , xn in let x1 : t1, . . . , xn : tn suchthat constructs can be efficiently computed. Essentially, for
each predicate invocation, we bind variables in the conclusion of the clauses that define this predicate
and whose position corresponds to bound arguments of the predicate invocation. Then, when evaluating
hypotheses of clauses from left to right, all variables of predicates must get bound by the corresponding
predicate call. The verification of the implementability condition can be disabled by
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set pred icates Implementab le = nocheck .

Recursive definitions of predicates are allowed.
Predicates and the let ... suchthat construct are incompatible with strong secrecy (modeled by

noninterf) and with choice.

Example: Modeling sets with predicates. As an example, we will demonstrate how to model sets
with predicates (see file docs/ex predicates.pv).

type bset .
fun cons s e t ( b i t s t r i n g , bse t ) : bse t [ data ] .
const emptyset : bse t [ data ] .

Sets are represented by lists: emptyset is the empty list and consset(M ,N) concatenates M at the head
of the list N .

pred mem( b i t s t r i n g , bse t ) .
clauses

fora l l x : b i t s t r i n g , y : bse t ; mem(x , cons s e t (x , y ) ) ;
f o ra l l x : b i t s t r i n g , y : bset , z : b i t s t r i n g ; mem(x , y ) −> mem(x , cons s e t ( z , y ) ) .

The predicate mem represents set membership. The first clause states that mem(M ,N) holds for some
terms M , N if N is of the form consset(M ,N ′), that is, M is at the head of N . The second clause states
that mem(M ,N) holds if N = consset(M ′,N ′) and mem(M ,N ′) holds, that is, if M is in the tail of N .
We conclude our example with a look at the following ProVerif script:

1 event e .
2 event e ’ .
3 query event ( e ) .
4 query event ( e ’ ) .
5
6 type bset .
7 fun cons s e t ( b i t s t r i n g , bse t ) : bse t [ data ] .
8 const emptyset : bse t [ data ] .
9 pred mem( b i t s t r i n g , bse t ) .

10 clauses

11 f o ra l l x : b i t s t r i n g , y : bse t ; mem(x , cons s e t (x , y ) ) ;
12 f o ra l l x : b i t s t r i n g , y : bset , z : b i t s t r i n g ; mem(x , y ) −> mem(x , cons s e t ( z , y ) ) .
13
14 process

15 new a : b i t s t r i n g ;new b : b i t s t r i n g ; new c : b i t s t r i n g ;
16 l et x = cons s e t ( a , emptyset ) in

17 l et y = cons s e t (b , x ) in

18 l et z = cons s e t ( c , y ) in (
19 i f mem(a , z ) then

20 i f mem(b , z ) then

21 i f mem( c , z ) then

22 event e
23 ) | (
24 l et w: b i t s t r i n g suchthat mem(w, x ) in event e ’
25 )

As expected, ProVerif demonstrates reachability of both e and e′. Observe that e′ is reachable by binding
the name a to the variable w.

Using predicates in queries. User-defined predicates can also be used in queries, so that the grammar
of facts F in Figure 4.2 is extended with user-defined facts p(M1, . . . ,Mn). As an example, the query

query x : b i t s t r i n g ; event ( e ( x ) ) ==> p(x )
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holds when, if the event e(x) has been executed, then p(x) holds. (If this property depends on the code
of the protocol but not on the definition of p, for instance because the event e(x) can be executed only
after a successful test if p(x) then, a good way to prove this query is to declare the predicate p with
option block and to omit the clauses that define p, so that ProVerif does not use the definition of p.
See below for additional information on the predicate option block.)

Predicate options. Predicate declarations may also mention options:

pred p(t1, . . . , tk) [ o1, . . . , on ] .

The allowed options o1, . . . , on are:

• block: Declares the predicate p as a blocking predicate. Blocking predicates must appear only in
hypotheses of clauses. This situation typically happens when the predicate is defined by no clause
declaration, but is used in tests or let ... suchthat constructs in the process (which leads to
generating clauses that contain the predicate in hypothesis).

Instead of trying to prove facts containing these predicates (which is impossible since no clause
implies such facts), ProVerif collects hypotheses containing the blocking predicates necessary to
prove the queries. In other words, ProVerif proves properties that hold for any definition of the
considered blocking predicate.

• memberOptim: This must be used only when p is defined by

p(x, f(x, y))
p(x, y) −> p(x, f(x′, y))

where f is a data constructor. (Note that it corresponds to the case in which p is the membership
predicate and f(x, y) represents the union of element x and set y.)

memberOptim enables the following optimization: attacker(x) && p(M1, x) && . . . && p(Mn, x)
where p is declared memberOptim is replaced with attacker(x) && attacker(M1) && . . . &&
attacker(Mn) when x does not occur elsewhere (just take x = f(M1, . . . f(Mn, x

′)) and notice that
attacker(x) if and only if attacker(M1), . . . , attacker(Mn), and attacker(x′)), or when the clause
has no selected hypothesis. In the last case, this introduces an approximation.

When x occurs in several memberOptim predicates, the transformation may introduce an ap-
proximation. (For example, consider p1 and p2 defined as above respectively using f1 and f2 as
data constructors. Then p1(M,x) && p2(M

′, x) is never true: for it to be true, x should be at the
same time f1( , ) and f2( , ).)

6.1.2 Referring to bound names in queries

Until now, we have considered queries that refer only to free names of the process (declared by free), for
instance query attacker(s) when s is declared by free s:t [private]. It is in fact also possible to refer
to bound names (declared by new n:t in the process) in queries. To distinguish them from free names,
they are denoted by new n in the query. As an example, consider the following input file:

1 free c : channel .
2 fun h( b i t s t r i n g ) : b i t s t r i n g .
3
4 free n : b i t s t r i n g .
5 query a t tacke r (h ( ( n ,new n ) ) ) .
6
7 process new n : b i t s t r i n g ; out ( c , n )

in which the process constructs and outputs a fresh name. Observe that the free name n is distinct from
the bound name n and the query evaluates whether the attacker can construct a hash of the free name
paired with the bound name. When an identifier is defined as a free name and the same identifier is used
to define a bound name, ProVerif produces a warning. Similarly, a warning is also produced if the same
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identifier is used by two names or variables within the same scope. For clarity, we strongly discourage
this practice and promote the use of distinct identifiers.

The term new n in a query designates any name created at the restriction new n:t in the pro-
cess. It is also possible to make it more precise which bound names we want to designate: if the
restriction new n:t is in the scope of a variable x, we can write new n[x = M ] to designate any
name created by the restriction new n:t when the value of x is M . This can be extended to sev-
eral variables: new n[x1 = M1, . . ., xn = Mn]. (This is related to the internal representation of bound
names in ProVerif. Essentially, names are represented as functions of the variables which they are in
the scope of. For example, the name a in the process new a:nonce is not in the scope of any vari-
ables and hence the name is modeled without arguments as a[ ]; whereas the name b in the process
in(c ,(x: bitstring ,y: bitstring ));new b:nonce is in the scope of variables x, y and hence will be repre-
sented by b[x=M ,y=N ] where the terms M , N are the values of x and y at run time, respectively.)
Consider, for example, the process:

1 free c : channel .
2 free A: b i t s t r i n g .
3 event e ( b i t s t r i n g ) .
4 query event ( e (new a [ x=A; y=new B ] ) ) .
5
6 process

7 ( in ( c , ( y : b i t s t r i n g , x : b i t s t r i n g ) ) ;new a : b i t s t r i n g ; event e ( a ) )
8 | (new B: b i t s t r i n g ; out ( c ,B) )

The query query event(e(new a[x=A;y=new B])) tests whether event e can be executed with argument
a name created by the restriction new a:bitstring when x is A and y is a name created by the restriction
new B:bitstring. In the example process, such an event can be executed.

Furthermore, in addition to the value of the variables defined above the considered restriction new,
one can also specify the value of !i, which represents the session identifier associated with the i-th
replication above the considered new, where i is a positive integer. (Replications are numbered from the
top of the process: !1 corresponds to the first replication at the top of the syntax tree.) These session
identifiers take a different value in each copy of the process created by the replication. It does not make
much sense to give a non-variable value to these session identifiers, but they can be useful to designate
names created in the same copy or in different copies of the process. Consider the following example:

1 free c : channel .
2 event e ( b i t s t r i n g , b i t s t r i n g ) .
3 query i : s i d ; event ( e (new A[ ! 1 = i ] , new B[ ! 1 = i ] ) ) .
4
5 process

6 ( in ( c , ( y : b i t s t r i n g , x : b i t s t r i n g ) ) ; event e (x , y ) )
7 | ! (new A: b i t s t r i n g ; new B: b i t s t r i n g ; out ( c , (A,B) ) )

The query event(e(new A[!1 = i], new B[!1 = i])) tests if one can execute events e(x,y) where x is a
name created at the restriction new A: bitstring and y is a name created at new B: bitstring in the
same copy as x (of session identifier i).

It is also possible to use let bindings in queries: let x = M in binds the term M to x inside a query.
Such bindings can be used anywhere in a query: they are added to queries, hypotheses, and facts in
the grammar of correspondence assertions given in Figure 4.2. In such bindings, the term M must be
a term without destructor. These bindings are specially useful in the presence of references to bound
names. For instance, in the query query attacker(h((new n,new n))), the two occurrences of new n
may represent different names created at the same restriction new n:t in the process. In contrast, in
the query query let x = new n in attacker(h((x,x))), x represents any name created at the restriction
new n:t and (x,x) is a pair containing twice the same name. Let bindings let x = M in therefore allow
us to designate several times exactly the same value, even if the term M may designate several possible
values due to the use of the new n construct.

References to bound names in queries were used, for instance, in [BC08].
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6.1.3 Exploring correspondence assertions

ProVerif allows the user to examine which events must be executed before reaching a state that falsifies
the current query. The syntax putbegin event:e instructs ProVerif to test which events e(. . .) are
needed in order to falsify the current query. This means that when an event e needs to be executed to
trigger another action, a begin fact begin(e(. . .)) is going to appear in the hypothesis of the corresponding
clause. This is useful when the exact events that should appear in a query are unknown. For instance,
with the query

query x : b i t s t r i n g ; putbegin event : e ; event (e′(x) ) .

ProVerif generates clauses that conclude end(e′(M)) (meaning that the event e′ has been executed), and
by manual inspection of the facts begin(e(M ′)) that occur in their hypothesis, one can infer the full
query:

query x1 : t1, . . . , xn : tn ; event (e′(. . . )) ==> event (e(. . . ) ) .

As an example, let us consider the process:

1 free c : channel .
2 fun h( b i t s t r i n g ) : b i t s t r i n g .
3
4 event e ( b i t s t r i n g ) .
5 event e ’ ( b i t s t r i n g ) .
6
7 query x : b i t s t r i n g ; putbegin event : e ; event ( e ’ ( x ) ) .
8
9 process

10 new s : b i t s t r i n g ;
11 (
12 event e ( s ) ;
13 out ( c , h ( s ) )
14 ) | (
15 in ( c ,=h( s ) ) ;
16 event e ’ ( h ( s ) )
17 )

ProVerif produces the output:

. . .
−− Query putbegin event : e ; not event ( e ’ ( x 5 ) )
Completing . . .
S t a r t i ng query not event ( e ’ ( x 5 ) )
goa l r eachab l e : begin ( e ( s 4 [ ] ) ) −> end ( e ’ ( h ( s 4 [ ] ) ) )
. . .

We can infer that the following correspondence assertion is satisfied by the process:

query x : b i t s t r i n g ; event ( e ’ ( h ( x ) ) ) ==> event ( e ( x ) ) .

This technique has been used in the verification of a certified email protocol, which can be found in
subdirectory examples/pitype/certified-mail-AbadiGlewHornePinkas/.

6.2 ProVerif options

In this section, we discuss the command-line arguments and settings of ProVerif. The default behavior
of ProVerif has been optimized for standard use, so these settings are not necessary for basic examples.
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6.2.1 Command-line arguments

The syntax for the command-line is

proverif [options] 〈filename〉

where proverif is ProVerif’s binary, 〈filename〉 is the input file, and the command-line parameters
[options] are of the following form:

• -in [format]

Choose the input format (horn, horntype, pi, or pitype). When the -in option is absent, the
input format is chosen according to the file extension, as detailed below. The input format described
in this manual is the typed pi calculus, which corresponds to the option -in pitype, and is the
default when the file extension is .pv. We recommend using this format. The other formats are
no longer actively developed. Input may also be provided using the untyped pi calculus (option
-in pi, the default when the file extension is .pi), typed Horn clauses (option -in horntype, the
default when the file extension is .horntype), and untyped Horn clauses (option -in horn, the
default for all other file extensions). The untyped Horn clauses and the untyped pi calculus input
formats are documented in the file docs/manual-untyped.pdf.

• -out [format]

Choose the output format, either solve (analyze the protocol) or spass (stop the analysis before
resolution, and output the clauses in the format required for use in the Spass first-order theorem
prover, see http://www.spass-prover.org/). The default is solve. When you select -out spass,
you must add the option -o [filename] to specify the file in which the clauses will be output.

• -TulaFale [version]

For compatibility with the web service analysis tool TulaFale (see the tool download at http:

//research.microsoft.com/projects/samoa/). The version number is the version of TulaFale
with which you would like compatibility. Currently, only version 1 is supported.

• -lib [filename]

Specify a particular library file. Library files may contain declarations (including process macros).
They are therefore useful for code reuse. Library files must be given the file extension .pvl, and this
must be omitted from [filename]. For example, the library file crypto.pvl would be specified as
-lib crypto. This option is intended for compatibility with CryptoVerif.

• -color

Display a colored output on terminals that support ANSI color codes. (Will result in a garbage
output on terminals that do not support these codes.) Unix terminals typically support ANSI color
codes. For emacs users, you can run ProVerif in a shell buffer with ANSI color codes as follows:

– start a shell with M-x shell

– load the ansi-color library with M-x load-library RET ansi-color RET

– activate ANSI colors with M-x ansi-color-for-comint-mode-on

– now run ProVerif in the shell buffer

You can also activate ANSI colors in shell buffers by default by adding the following to your .emacs:

(autoload ’ansi-color-for-comint-mode-on "ansi-color" nil t)

(add-hook ’shell-mode-hook ’ansi-color-for-comint-mode-on)

• -graph [directory]

This option is available only when the command-line option -html [directory] is not set. It
generates PDF files containing graphs representing traces of attacks that ProVerif had found.
These PDF files are stored in the specified directory. That directory must already exist. By default,
graphviz is used to create these graphs from the dot files generated by ProVerif. However, the user
may specify a command of his own choice to generate graphs with the command line argument
-commandLineGraph. Two versions of the graphs are available: a standard and a detailed version.
The detailed version is built when set traceDisplay = long. has been added to the input file.
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• -html [directory]

This option is available only when the command-line option -graph [directory] is not set. It
generates HTML output in the specified directory. That directory must already exist. ProVerif
may overwrite files in that directory, so you should create a fresh directory the first time you use
this option. You may reuse the same directory for several runs of ProVerif if you do not want to
keep the output of previous runs.

ProVerif includes a CSS file cssproverif.css in the main directory of the distribution. You should
copy that file to [directory]. You may edit it to suit your preferences if you wish.

After running ProVerif, you should open the file [directory]/index.html with your favorite web
browser to display the results.

If graphviz is installed and you did not specify a command line with the option -commandLineGraph,
then drawings of the traces are available by clicking on graph trace. Two versions of the
drawings are available: a standard and a detailed version. The detailed version is built when
set traceDisplay = long. has been added to the input file.

• -commandLineGraph [command line]

The option -graph [directory] or the option -html [directory] must be set. The specified
command line is called for each attack trace found by ProVerif. It should contain the string
‘‘%1’’ which will be replaced by the name of the file in which ProVerif stores the graphical
respresentation of the attack, without its .dot extension. For example, if you give the command
line option -commandLineGraph "dot -Tsvg %1.dot -o %1.svg", graphviz will generate a SVG
file (instead of a PDF file) for each attack found by ProVerif.

• -help or --help
Display a short summary of command-line options

6.2.2 Settings

The manner in which ProVerif performs analysis can be modified by the use of parameters defined in
the form set 〈name〉 = 〈value〉. The parameters below are supported, where the default value is the first
mentioned. ProVerif also accepts no instead of false and yes instead of true.

Attacker configuration settings.

• set ignoreTypes = true. (or “set ignoreTypes = all.”)
set ignoreTypes = false. (or “set ignoreTypes = none.” or “set ignoreTypes = attacker.” for back-
ward compatibility)

Indicates how ProVerif behaves with respect to types. By default (set ignoreTypes = true.),
ProVerif ignores types; that is, the semantics of processes ignores types: the attacker may build
and send ill-typed terms and the processes do not check types. This setting allows ProVerif to
detect type flaw attacks. With the setting (set ignoreTypes = false.), the protocol respects the
type system. In practice, protocols can be implemented to conform to this setting by making sure
that the type converter functions and the tuples are correctly implemented: the result of a type
converter function must be different from its argument, different from values of the same type
obtained without applying the type converter function, and must identify which type converter
function was applied, and this information must be checked upon pattern-matching; a tuple must
contain the type of its arguments together with their value, and this type information must also be
checked upon pattern-matching. Provided there is a single type converter function from one type
to another, this can be implemented by adding a tag that represents the type to each term, and
checking in processes that the tags are correct. The attacker may change the tag in clear terms
(but not under an encryption or a signature, for instance). However, that does not allow it to
bypass the type system. (Processes will never inspect inside values whose content does not match
the tag.)

Note that static typing is always enforced; that is, user-defined input files must always be well-typed
and ProVerif will report any type errors.
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When types are ignored (set ignoreTypes = true.), functions marked typeConverter are removed
when generating Horn clauses, so that you get exactly the same clauses as if the typeConverter

function was absent. (In other words, such functions are the identity when types are ignored.)

When types are taken into account, the state space is smaller, so the verification is faster, but on the
other hand fewer attacks are found. Some examples do not terminate with set ignoreTypes = true,
but terminate with set ignoreTypes = false.

• set attacker = active.
set attacker = passive.

Indicates whether the attacker is active or passive. An active attacker can read messages, compute,
and send messages. A passive attacker can read messages and compute but not send messages.

• set keyCompromise = none.
set keyCompromise = approx.
set keyCompromise = strict.

By default (set keyCompromise = none.), it is assumed that session keys and more generally the
session secrets are not a priori compromised. (The session secrets are all the names bound under
a replication.) Otherwise, it is assumed that the session secrets of some sessions are compromised,
that is, known by the adversary. Then ProVerif determines whether the secrets of other sessions can
be obtained by the adversary. In this case, the names that occur in queries always refer to names
of non-compromised sessions (the attacker has all names of compromised sessions), and the events
that occur before an arrow ==> in a query are executed only in non-compromised sessions. With
set keyCompromise = approx., the compromised sessions are considered as executing possibly in
parallel with non-compromised ones. With set keyCompromise = strict., the compromised sessions
are finished before the non-compromised ones begin. The chances of finding an attack are greater
with set keyCompromise = approx.. (It may be a false attack due to the approximations made
in the verifier.) Key compromise is incompatible with attack reconstruction; moreover, phases
and synchronizations cannot be used with the key compromise parameter enabled, because key
compromise introduces a two-phase process.

Rather than using this setting, we recommend encoding the desired key compromise directly in the
process that models the protocol, by outputting the compromised secrets on a public channel.

Simplification of processes

• set simplifyProcess = true.
set simplifyProcess = false .
set simplifyProcess = interactive .

This setting is useful for proofs of observational equivalences with choice. With the setting
set simplifyProcess = true, in case ProVerif fails to prove the desired equivalence, it tries to sim-
plify the given biprocess and to prove the desired property on the simplified process, which increases
its chances of success. With the setting set simplifyProcess = false, ProVerif does not compute
the simplified biprocesses. With the setting set simplifyProcess = interactive, an interactive menu
appears when ProVerif fails to prove the equivalence on the input biprocess. This menu allows one
to either view the different simplified biprocesses or to select one of the simplified biprocesses for
ProVerif to prove the equivalence.

• set rejectChoiceTrueFalse = true.
set rejectChoiceTrueFalse = false .

With the setting set rejectChoiceTrueFalse = true, ProVerif does not try to prove observational
equivalence for simplified processes that still contain tests if choice[true, false ] then, because
the observational equivalence proof has little chance of succeeding in this case. With the setting
set rejectChoiceTrueFalse = false, ProVerif still tries to observational equivalence for simplified
processes that still contain tests if choice[true, false ] then.
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• set rejectNoSimplif = true.
set rejectNoSimplif = false .

With the setting set rejectNoSimplif = true, ProVerif does not try to prove observational equiva-
lence for simplified processes, when simplification has not managed to merge at least two branches
of a test or to decompose a let f (...) = f (...) in. With the setting set rejectNoSimplif = false,
ProVerif still tries to observational equivalence for these processes.

Verification of predicate definitions

• set predicatesImplementable = check.
set predicatesImplementable = nocheck.

Sets whether ProVerif should check that predicate calls are implementable. See Section 6.1.1 for
more details on this check. It is advised to leave the check turned on, as it is by default. Otherwise,
the semantics of the processes may not be well-defined.

Performance and termination settings. The performance settings may result in more false attacks,
but they never sacrifice soundness. It follows that when ProVerif says that a property is satisfied, then
the model really does guarantee that property, regardless of how ProVerif has been configured using the
settings presented here.

• set movenew = false.
set movenew = true.

Sets whether ProVerif should try to move restrictions under inputs, to have a more precise anal-
ysis (set movenew = true.), or leave them where the user has put them (set movenew = false.).
Internally, ProVerif represents fresh names by functions of the variables bound above the new.
Adjusting these arguments allows one to change the precision of the analysis: the more arguments
are included, the more precise the analysis is, but also the more costly in general. The setting
(set movenew = true.) yields the most precise analysis. You can fine-tune the precision of the
analysis by keeping the default setting and moving news manually in the input process.

• set maxDepth = none.
set maxDepth = n.

Do not limit the depth of terms (none) or limit the depth of terms to n, where n is an integer. A
negative value means no limit. When the depth is limited to n, all terms of depth greater than n
are replaced with new variables. (Note that this makes clauses more general.) Limiting the depth
can be used to enforce termination of the solving process, at the cost of precision. This setting
is not recommended: it often causes too much imprecision. Using nounif (see Section 6.3.1) is
delicate but may be more successful in practice.

• set maxHyp = none.
set maxHyp = n.

Do not limit the number of hypotheses of clauses (none) or limit it to n, where n is an integer. A
negative value means no limit. When the number of hypotheses is limited to n, arbitrary hypotheses
are removed from clauses, so that only n hypotheses remain. Limiting the number of hypotheses
can be used to enforce termination of the solving process at the cost of precision (although in
general limiting the depth by the above declaration is enough to obtain termination). This setting
is not recommended.

• set selFun = TermMaxsize.
set selFun = Term.
set selFun = NounifsetMaxsize.
set selFun = Nounifset.

Chooses the selection function that governs the resolution process. All selection functions avoid
unifying on facts indicated by a nounif declaration (see Section 6.3.1). Nounifset does exactly
that. Term automatically avoids some other unifications, to help termination, as determined by
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some heuristics. NounifsetMaxsize and TermMaxsize choose the fact of maximum size when there
are several possibilities. This choice sometimes gives impressive speedups.

When the selection function is set to Nounifset or NounifsetMaxsize; ProVerif will display a warning,
and wait for a user response, when ProVerif thinks the solving process will not terminate. This
behavior can be controlled by the following additional setting.

– set stopTerm = true.
set stopTerm = false.

Display a warning and wait for user answer when ProVerif thinks the solving process will not
terminate (true), or go on as if nothing had happened ( false ). (We reiterate that these settings
are only available when the selection function is set to either Nounifset or NounifsetMaxsize.)

• set redundancyElim = simple.
set redundancyElim = no.
set redundancyElim = best.

An elimination of redundant clauses has been implemented: when a clause without selected
hypotheses is derivable from other clauses without selected hypothesis, it is removed. With
redundancyElim = simple, this is applied for newly generated clauses. With redundancyElim = no,
this is never applied. With redundancyElim = best, this is also applied when an old clause can be
derived from other old clauses plus the new clause.

Detecting redundant clauses takes time, but redundancy elimination may also speed up the res-
olution when it eliminates clauses and simplify the final result of ProVerif. The consequences on
speed depend on the considered protocol; the default (set redundancyElim = simple.) is a reason-
able tradeoff for most examples.

• set redundantHypElim = beginOnly.
set redundantHypElim = false.
set redundantHypElim = true.

When a clause is of the form H && H ′ −> C, and there exists σ such that σH ⊆ H ′ and σ does
not change the variables of H ′ and C, then the clause can be replaced with H ′ −> C (since there
are implications in both directions between these clauses).

This replacement is done when redundantHypElim is set to true, or when it is set to beginOnly
and H contains a begin fact (which is generated when events occur after ==> in a query) or a
blocking fact. Indeed, testing this property takes time, and slows down small examples. On the
other hand, on big examples, in particular when they contain many events (or blocking facts), this
technique can yield huge speedups.

• set eqInNames = false.
set eqInNames = true.

This setting will probably not be used by most users. It influences the arguments of the functions
that represent fresh names internally in ProVerif. When eqInNames = false, these arguments
consist of variables defined by inputs, indices associated to replications, and terms that contain
destructors defined by several rewrite rules, but do not contain other computed terms since their
value is fixed knowing the arguments already included. When eqInNames = true, these arguments
additionally include terms that contain constructors associated with several rewrite rules due to
the equational theory. Because of these several rewrite rules, these terms may reduce to several
syntactically different terms, which are all equal modulo the equational theory. In some rare
examples, eqInNames = true speeds up the analysis because equality of the fresh names then
implies that these terms are syntactically equal, so fewer clauses are considered. However, for
technical reasons, eqInNames = true is incompatible with attack reconstruction.

• set expandIfTermsToTerms = false.
set expandIfTermsToTerms = true.

This setting modifies the expansion of terms if ... then ... else ... . By default (with the set-
ting set expandIfTermsToTerms = false.), they are expanded into processes. With the setting
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set expandIfTermsToTerms = true., terms if ... then ... else ... are transformed into terms that
use a special destructor to represent the test. The latter transformation is more precise when prov-
ing observational equivalence with choice, but leads to a very slow generation of the clauses for
some examples.

• set expandSimplifyIfCst = true.
set expandSimplifyIfCst = false.

This setting modifies the expansion of terms to into processes. With the setting set expandSimplifyIfCst = true.,
if a process if M then P else Q occurs during this expansion and M is true, then this process is
transformed into P . If this process occurs and M is false , then this process is transformed into
Q. This transformation is useful because the expansion of terms into processes may introduce such
tests with constant conditions. However, the transformation will be performed even if the constant
was already there in the initial process, which may cut part of the process, and for instance remove
restrictions that occur in the initial process and are needed for some queries or secrecy assumptions.

With the setting set expandSimplifyIfCst = false., this transformation is not performed.

• set symbOrder = ”f1 > · · · > fn”.

ProVerif uses a lexicographic path ordering in order to prove termination of convergent equational
theories. By default, it uses a heuristic to build the ordering of function symbols underlying this
lexicographic path ordering. This setting allows the user to set this ordering of function symbols.

Attack reconstruction settings.

• set simplifyDerivation = true.
set simplifyDerivation = false .

Should the derivation be simplified by removing duplicate proofs of the same attacker facts?

• set abbreviateDerivation = true.
set abbreviateDerivation = false .

When abbreviateDerivation = true, ProVerif defines symbols to abbreviate terms that represent
names a[. . .] before displaying the derivation, and uses these abbreviations in the derivation. These
abbreviations generally make the derivation easier to read by reducing the size of terms.

• set explainDerivation = true.
set explainDerivation = false .

When explainDerivation = true, ProVerif explains in English each step of the derivation (returned
in case of failure of a proof). This explanation refers to program points in the given process. When
explainDerivation = false, it displays the derivation by referring to the clauses generated initially.

• set reconstructTrace = true.
set reconstructTrace = false .

With set reconstructTrace = true., when a query cannot be proved, the tool tries to build a pi
calculus execution trace that is a counter-example to the query [AB05c].

This feature is currently incompatible with key compromise (that is, when keyCompromise is set
to either approx or strict ).

Moreover, for noninterf and choice, it reconstructs a trace, but this trace may not always prove
that the property is wrong: for noninterf, it reconstructs a trace until a program point at which the
process behaves differently depending on the value of the secret (takes a different branch of a test,
for instance), but this different behavior is not always observable by the adversary; similarly, for
choice, it reconstructs a trace until a program point at which the process using the first argument
of choice behaves differently from the process using the second argument of choice.

For injective queries, the trace reconstruction proceeds in two steps. In the first step, it reconstructs
a trace that corresponds to the derivation found by resolution. This trace generally executes events
once, so does not contradict injectivity. In a second step, it tries to reconstruct a trace that executes
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certain events twice while it executes other events once, in such a way that injectivity is really
contradicted. This second step may fail even when the first one succeeds. For non-injective queries
(including secrecy), when a trace is found, it is a counter-example to the query, which is then false.

• set unifyDerivation = true.
set unifyDerivation = false .

When set to true, activates a heuristic that increases the chances of finding a trace that corresponds
to a derivation. This heuristic unifies messages received by the same input (same occurrence and
same session identifiers) in the derivation. Indeed, these messages must be equal if the derivation
corresponds to a trace.

• set reconstructDerivation = true.
set reconstructDerivation = false .

When a fact is derivable, should we reconstruct the corresponding derivation? (This setting has
been introduced because in some extreme cases reconstructing a derivation can consume a lot of
memory.)

• set displayDerivation = true.
set displayDerivation = false .

Should the derivation be displayed? Disabling derivation display is useful for very big derivations.

• set traceBacktracking = true.
set traceBacktracking = false.

Allow or disable backtracking when reconstructing traces. In most cases, when traces can be
found, they are found without backtracking. Disabling backtracking makes it possible to display
the trace during its computation, and to forget previous states of the trace. This reduces memory
consumption, which can be necessary for reconstructing very big traces.

Swapping settings.

• set interactiveSwapping = false.
set interactiveSwapping = true.

By default, in order to prove observational equivalence in the presence of synchronization (see
Section 4.3.2), ProVerif tries all swapping strategies. With the setting interactiveSwapping = true,
it asks the user which swapping strategy to use.

• set swapping = ”swapping stragegy”.

This settings determines which swapping strategy to usein order to prove observational equivalence
in the presence of synchronization. See Section 4.3.2 for more details, in particular the syntax of
swapping strategies.

Display settings.

• set traceDisplay = short.
set traceDisplay = long.
set traceDisplay = none.

Choose the format in which the trace is displayed after trace reconstruction. By default
(traceDisplay = short.), outputs the labels of a labeled reduction. With set traceDisplay = long.,
outputs the current state before each input and before and after each I/O reduction, as well as the
list of all executed reductions. With set traceDisplay = none., the trace is not displayed.

• set verboseClauses = none.
set verboseClauses = explained.
set verboseClauses = short.

When verboseClauses = none, ProVerif does not display the clauses it generates. When
verboseClauses = short, it displays them. When verboseClauses = explained, it adds an English
sentence after each clause it generates to explain where this clause comes from.
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• set abbreviateClauses = true.
set abbreviateClauses = false.

When abbreviateClauses = true, ProVerif defines symbols to abbreviate terms that represent names
a[. . .] and uses these abbreviations in the display of clauses. These abbreviations generally make
the clauses easier to read by reducing the size of terms.

• set removeUselessClausesBeforeDisplay = true.
set removeUselessClausesBeforeDisplay = false.

When removeUselessClausesBeforeDisplay = true, ProVerif removes subsumed clauses and tautolo-
gies from the initial clauses before displaying them, to avoid showing many useless clauses. When
removeUselessClausesBeforeDisplay = false, all generated clauses are displayed.

• set verboseEq = true.
set verboseEq = false.

Display information on handling of equational theories when true.

• set verboseTerm = true.
set verboseTerm = false.

Display information on termination when true (changes in the selection function to improve termi-
nation; termination warnings).

• set verboseRules = false.
set verboseRules = true.

Display the number of clauses every 200 clause created during the solving process ( false ) or display
each clause created during the solving process (true).

• set verboseRedundant = false.
set verboseRedundant = true.

Display eliminated redundant clauses when true.

• set verboseCompleted = false.
set verboseCompleted = true.

Display completed set of clauses after saturation when true.

6.3 Theory and tricks

In this section, we discuss tricks to get the most from ProVerif for advanced users. These tricks may
improve performance and aid termination. We also propose alternative ways to encode protocols and pi
calculus encodings for some standard features. We also detail sources of incompleteness of ProVerif, for
a better understanding of when and why false attacks happen.

User tricks. You are invited to submit your own ProVerif tricks, which we may include in future
revisions of this manual.

6.3.1 Performance and termination

Secrecy assumptions

Secrecy assumptions may be added to ProVerif scripts in the form:

not x1 : t1, . . . , xn : tn ; F .

which states that F cannot be derived, where F can be a fact attacker(M), attacker(M) phase n,
mess(N,M), mess(N,M) phase n, table(d(M1, . . . ,Mn)), table(d(M1, . . . ,Mn)) phase n as defined
in Figure 4.2 or a user-defined predicate p(M1, . . . ,Mk) (see Section 6.1.1). When F contains variables,
the secrecy assumption not x1 : t1, . . . , xn : tn; F . means that no instance of F is derivable.
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ProVerif can then optimize its internal clauses by removing clauses that contain F in hypotheses,
thus simplifying the clause set and resulting in a performance advantage. The use of secrecy assumptions
preserves soundness because ProVerif also checks that F cannot be derived; if it can be derived, ProVerif
fails with an error message. Secrecy assumptions can be extended using the binding let x = M in and
bound names designated by new a[. . .] as discussed in Section 6.1.2; these two constructs are allowed as
part of F .

The name “secrecy assumptions” comes from the particular case

not a t tacke r (M ) .

which states that attacker(M) cannot be derived, that is, M is secret.

Grouping queries

Queries may also be stated in the form:

query x1 : t1, . . . , xm : tm ; q1; . . . ; qn .

where each qi is a query as defined in Figure 4.2, or a putbegin declaration (see Section 6.1.3). A
single query declaration containing q1; . . . ; qn is evaluated by building one set of clauses and performing
resolution on it, whilst independent query declarations

query x1 : t1, . . . , xm : tm ; q1 .
. . .
query x1 : t1, . . . , xm : tm ; qn .

are evaluated by rebuilding a new set of clauses from scratch for each qi. So the way queries are grouped
influences the sharing of work between different queries, and therefore performance. For optimization,
one should group queries that involve the same events; but separate queries that involve different events,
because the more events appear in the query, the more complex the generated clauses are, which can
slow down ProVerif considerably, especially on complex examples. If one does not want to optimize, one
can simply put a single query in each query declaration.

Tuning the resolution strategy.

The resolution strategy can be tuned using

nounif x1 : t1, . . . , xk : tk ; F .

where the fact F can be attacker(M), attacker(M) phase n, mess(N,M), mess(N,M) phase n,
table(d(M1, . . . ,Mn)), table(d(M1, . . . ,Mn)) phase n as defined in Figure 4.2 or a user-defined pred-
icate p(M1, . . . ,Mk) (see Section 6.1.1), and F can also include the construct new a[. . .] to designate
bound names and let bindings let x = M in (see Section 6.1.2). The declaration nounif F prevents
ProVerif from resolving upon facts that match F : F may contain two kinds of variables: ordinary vari-
ables match only variables, while star variables, of the form ∗x where x is a variable name, match any
term. The nounif declaration can be labeled with an optional integer n

nounif x1 : t1, . . . , xk : tk ; F /n .

The optional integer n indicates how much we should avoid resolution upon facts that match F : the
greater n, the more such resolutions will be avoided.

More formally, ProVerif represents protocols internally by Horn clauses, and the resolution algorithm
combines clauses: from two clauses R and R′, it generates a clause R ◦F0

R′ defined as follows

R = H −> C R′ = F0 && H ′ −> C ′

R ◦F0
R′ = σH && σH ′ −> σC ′

where σ is the most general unifier of C and F0, C is selected in R, and F0 is selected in R′. The selected
literal of each clause is determined by a selection function, which can be chosen by set selFun = name.,
where name is the name of the selection function, Nounifset, NounifsetMaxsize, Term, or TermMaxsize.
The selection functions work as follows:
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• Hypotheses of the form p(. . .) when p is declared with option block and internal predicates begin
and testunif are unselectable. (The predicate testunif is handled by a specific internal treatment.
The predicates block and begin have no clauses that conclude them; the goal is to produce a result
valid for any definition of these predicates, so they must not be selected.)

The conclusion bad is also unselectable. (The goal is to determine whether bad is derivable, so we
should select a hypothesis if there is some, to determine whether the hypothesis is derivable.)

Facts p(x1, . . . , xn) when p is an internal predicate attacker or comp, and facts that unify with the
conclusions F of equivalences

f o ra l l x1 : t1, . . . , xn : tn ; F1 && . . . && Fm <=> F

are also unselectable. (Due to data-decomposition clauses, selecting such facts would lead to non-
termination.)

Unselectable hypotheses are never selected. An unselectable conclusion is selected only when all
hypotheses are unselectable (or there is no hypothesis).

• If there is a selectable literal, the selection function selects the literal of maximum weight among the
selectable literals. In case several literals have the maximum weight, the conclusion is selected in
priority if it has the maximum weight, then the first hypothesis with maximum weight is selected.
The weight of each literal is determined as follows:

– If the selection function is Term or TermMaxsize (the default), and a hypothesis is a looping
instance of the conclusion, then the conclusion has weight −7000. (A fact F is a looping
instance of a fact F ′ when there is a substitution σ such that F = σF ′ and σ maps some
variable x to a term that contains x and is not a variable. In this case, repeated instantiations
of F ′ by σ generate an infinite number of distinct facts σnF ′.) The goal has weight −3000.
(The goal is the fact for which we want to determine whether it is derivable or not. It appears
has a conclusion in the second stage of ProVerif’s resolution algorithm.) In all other cases,
the conclusion has weight −1.

– If the selection function is Term or TermMaxsize (the default), and the conclusion is a looping
instance of a hypothesis, then this hypothesis has weight −7000.

– Hypotheses that match a nounif declaration internally have weight −n when the nounif

declaration is labeled with the integer n. By default, when n is not mentioned, they have
weight −6000. The minimum weight that can be set by nounif is −9999. If −n ≤ −10000,
the weight will be set to −9999.

– All other hypotheses have as weight their size with the selection functions TermMaxsize (the
default) and NounifsetMaxsize. They have weight 0 with the selection functions Term and
Nounifset.

• If the selection function is Term or TermMaxsize (the default) and the conclusion is selected in a
clause, then for each hypothesis F of that clause such that the conclusion C is a looping instance of
F (C = σF ), a nounif declaration with weight −5000 is automatically added for facts σ′F where
σ and σ′ have disjoint supports. (If σx is not a variable, then σ′x must be a variable.)

The selection functions Term and TermMaxsize try to favor termination by auto-detecting loops and
tuning the selection function to avoid them. For instance, suppose that the conclusion is a looping
instance of a hypothesis, so the clause is of the form H && F −> σF .

• Assume that F is selected in this clause, and there is a clause H ′ −> F ′, where F ′ unifies with F ,
and the conclusion is selected in H ′ −> F ′. Let σ′ be the most general unifier of F and F ′. So
the algorithm generates:

σ′H ′ && σ′H −> σ′σF
. . .
σ′H ′ && σ′H && σ′σH &&.. . && σ′σn−1H −> σ′σnF
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assuming that the conclusion is selected in all these clauses, and that no clause is removed because
it is subsumed by another clause. So the algorithm would not terminate. Therefore, in order to
avoid this situation, we should avoid selecting F in the clause H && F −> σF . That is why we
give F weight −7000 in this case. A symmetric situation happens when a hypothesis is a looping
instance of the conclusion, so we give weight −7000 to the conclusion in this case.

• Assume that the conclusion is selected in the clause H && F −> σF , and there is a clause
H ′ && σ′F −> C (up to renaming of variables), where σ′ commutes with σ (in particular, when σ
and σ′ have disjoint supports), and that σ′F is selected in this clause. So the algorithm generates:

σ′H && σH ′ && σ′F −> σC
. . .
σ′H && σ′σH && . . . && σ′σn−1H && σnH ′ && σ′F −> σnC

assuming that σ′F is selected in all these clauses, and that no clause is removed because it is
subsumed by another clause. So the algorithm would not terminate. Therefore, in order to avoid
this situation, if the conclusion is selected in the clause H && F −> σF , we should avoid selecting
facts of the form σ′F , where σ′ and σ have disjoint supports, in other clauses. That is why we
automatically add a nounif declaration for these facts.

Obviously, these heuristics do not avoid all loops. One can use manual nounif declarations to tune the
selection function further. One typically uses set verboseRules = true. to display the clauses generated
by ProVerif. One can then observe the loops that occur, and one can try to avoid them by using a
nounif declaration that prevents the selection of the literal that causes the loop. By default, the weight
of manual nounif declarations is such that they have priority over automatic nounif declarations, but
they have lower priority than situations in which the conclusion is a looping instance of a hypothesis or
conversely. One can adjust the weight manually to obtain different priority levels.

The selection functions TermMaxsize and NounifsetMaxsize preferably select large facts. This can
yield important speed-ups for some examples.

Tagged protocols

A typical cause of non-termination of ProVerif is the existence of loops inside protocols. Consider for
instance a protocol with the following messages:

B → A : senc (Nb, k )
A → B : senc ( f (Nb) , k )

(This example is inspired from the Needham-Schroeder shared-key protocol.) Suppose that A does not
know the value of Nb (nonce generated by B). In this case, in A’s role, Nb is a variable. Then, the adver-
sary can send the second message to A as if it were the first one, and obtain as reply senc(f( f(Nb), k),
which can itself be sent as if it were the first message, and so on, yielding to a loop that generates
senc(fn(Nb), k) for any integer n.

A way to avoid such loops is to add tags. A tag is a distinct constant for each application of a
cryptographic primitive (encryption, signatures, . . . ) in the protocol. Instead of applying the primitive
just to the initial message, one applies it to a pair containing a tag and the message. For instance, after
adding tags, the previous example becomes:

B → A : senc ( ( c0 , Nb) , k )
A → B : senc ( ( c1 , f (Nb) ) , k )

After adding tags, the second message cannot be mixed with the first one because of the different tags c0
and c1, so the previous loop is avoided. More generally, one can show that ProVerif always terminates
for tagged protocols (modulo some restrictions on the primitives in use and on the properties that are
proved) [BP05], [Bla09, Section 8.1]. Adding tags is a good design practice [AN96]: the tags facilitate
the parsing of messages, and they also prevent type-flaw attacks (in which messages of different types
are mixed) [HLS00]. Tags are used in some practical protocols such as SSH. However, if one verifies
a protocol with tags, one should implement the protocol with these tags: the security of the tagged
protocol does not imply the security of the untagged version.
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Position and arguments of new

Internally, fresh names created by new are represented as functions of the inputs located above that
new. So, by moving new upwards or downwards, one can influence the internal representation of the
names and tune the performance and precision of the analysis. Typically, the more the new are moved
downwards in the process, the more precise and the more costly the analysis is. (There are exceptions
to this general rule, see for example the end of Section 5.4.2.)

The setting set movenew = true. allows one to move new automatically downwards, potentially
yielding a more precise analysis. By default, the new are left where they are, so the user can manually
tune the precision of the analysis. Furthermore, it is possible to indicate explicitly at each replication
which variables should be included as arguments in the internal representation of the corresponding fresh
name: inside a process

new a [x1, . . . , xn ] : t

means that the internal representation of names created by that restriction is going to include x1, . . . , xn

as arguments. In any case, the internal representation of names always includes session identifiers
(necessary for soundness) and variables needed to answer queries. These annotations are ignored in
the case of observational equivalence proof between two processes (keyword equivalence) or when the
biprocess is simplified before an observational equivalence proof. (Otherwise, the transformations of the
processes might be prevented by these annotations.)

In general, we advise generating the fresh names by new when they are needed. Generating all fresh
names at the beginning of the protocol is a bad idea: the names will essentially have no arguments, so
ProVerif will merge all of them and the analysis will be so imprecise that it will not be able to prove
anything. On the other hand, if the new take too many arguments, the analysis can become very costly
or even not terminate. By the setting set verboseRules = true., one can observe the clauses generated
by ProVerif; if these clauses contain names with very large arguments that grow more and more, moving
new upwards or giving an explicit list of arguments to remove some arguments can improve the speed of
ProVerif or make it terminate. The size of the arguments of names associated with random coins is the
reason of the cost of the analysis in the presence of probabilistic encryption (see Section 4.2.3). When
one uses function macros to represent encryption, one cannot easily move the new upwards. If needed,
we advise manually expanding the encryption macro and moving the new that comes from this macro
upwards or giving it explicit arguments.

Environment of events

In order to prove injective correspondences such as

query x1 : t1, . . . , xn : tn ; inj−event (e(M1, . . . ,Mj)) ==> inj−event (e′(N1, . . . , Nk) ) .

ProVerif adds an environment to the injective event e′ that occur after the arrow. Injectivity is proved
when the session identifier of the event e occurs in that environment. By default, ProVerif puts as
many variables as possible in that environment. In some examples, this may lead to a loop or to a slow
resolution. So ProVerif allows the user to specify which variables should be included in the environment,
by adding the desired environment between brackets in the process:

event (e′(N ′

1, . . . , N
′

k) ) [ x1, . . . , xl ] ; P .

puts variables x1, . . . , xl in the environment of event e′. When no variable is mentioned:

event (e′(N ′

1, . . . , N
′

k) ) [ ] ; P .

ProVerif uses the arguments of the event, here N ′

1, . . . , N
′

k, as environment. Typically, the environment
should include a fresh name (e.g., a nonce) created by the process that contains event e, and received by
the process that contains event e′, before executing e′.

6.3.2 Alternative encodings of protocols

Key distribution

In Section 4.1.4, we introduced tables and demonstrated their application for key distribution with
respect to the Needham-Schroeder public key protocol (Sections 5.2 and 5.3). There are three further
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noteworthy key distribution methods which we will now discuss.

1. Key distribution by scope. The first alternative key distribution mechanism simply relies on variable
scope and was used in our exemplar handshake protocol and in Section 5.1 without discussion. In
this formalism, we simply ensure that the required keys are within the scope of the desired processes.
The main limitation of this encoding is that it does not allow one to establish a correspondence
between host names and keys for an unbounded number of hosts.

2. Key distribution over private channels. In an equivalent manner to tables, keys may be distributed
over private channels.

• Instead of declaring a table d, we declare a private channel by free cd: channel [private].

• Instead of inserting an element, say (h,k), in table d, we output an unbounded number of
copies of that element on channel cd by !out(cd, (h,k)). (The rest of the process should be
in parallel with that output so that it does not get replicated as well.)

• Instead of getting an element, say by get(d, (=h,k)) to get the key k for host h, we read on
the private channel cd by in(cd, (=h,k:key)).

With this encoding, all keys inserted in the table become available (in an unbounded number of
copies) on the private channel cd.

We present this encoding as an example of what can be done using private channels. It does not
have advantages with respect to using the specific ProVerif constructs for inserting and getting
elements of tables.

3. Key distribution by constructors and destructors. Finally, as we alluded in Section 3.1.1, private
constructors can be used to model the server’s key table. In this case, we make use of the following
constructors and associated destructors:

type host .
type skey .
type pkey .

fun pk ( skey ) : pkey .
fun f h o s t ( pkey ) : host .
reduc x : pkey ; getkey ( f ho s t ( x ) ) = x [ private ] .

The constructor fhost generates a host name from a public key, while the destructor getkey returns
the public key from the host name. The constructor fhost is public so that the adversary can
create host names for the keys it creates. The destructor getkey is private; this is not essential for
public keys, but when this technique is used with long-term secret keys rather than public keys, it
is important that getkey be private so that the adversary cannot obtain all secret keys from the
(public) host names.

This technique allows one to model an unbounded number of participants, each with a dis-
tinct key. This is however not necessary for most examples: one honest participant for each
role is sufficient, the other participants can be considered dishonest and included in the adver-
sary. An advantage of this technique is that it sometimes makes it possible for ProVerif to
terminate while it does not terminate with the table of host names and keys used in previous
chapters (because host names and keys that are complex terms may be registered by the ad-
versary). For instance, in the file examples/pitype/choice/NeedhamSchroederPK-corr1.pv, we
had to perform key registration in an earlier phase than the protocol in order to obtain termi-
nation. Using the fhost/getkey encoding, we can obtain termination with a single phase (see
examples/pitype/choice/NeedhamSchroederPK-corr1-host-getkey.pv). However, this encod-
ing also has limitations: for instance, it does not allow the adversary to register several host names
with the same key, which is sometimes possible in reality, so this can lead to missing some attacks.
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Bound and private names

The following three constructs are essentially equivalent: a free name declared by free n:t, a constant
declared by const n:t, and a bound name created by new n:t not under any replication in the process.
They all declare a constant. However, in queries, bound names must be referred to by new n rather than
n (see Section 6.1.2). Moreover, from a semantic point of view, it is much easier to define the meaning
of a free name or a constant in a query than a reference to a bound name. (The bound name can be
renamed, and the query is not in the scope of that name.) For this reason, we recommend using free
names or constants rather than bound names in queries when possible.

6.3.3 Applied pi calculus encodings

The applied pi calculus is a powerful language that can encode many features (including arithmetic!),
using private channels and function symbols. ProVerif cannot handle all of these encodings: it may not
terminate if the encoding is too complex. It can still take advantage of the power of the applied pi
calculus in order to encode non-trivial features. This section presents a few examples.

Asymmetric channels

Up to now, we have considered only public channels (on which the adversary can read and write) and
private channels (on which the adversary can neither read nor write). It is also possible to encode
asymmetric channels (on which the adversary can either read or write, but not both).

• A channel cwrite on which the adversary can write but not read can be encoded as follows:
declare cwrite as a private channel by free cwrite:channel [private]. and add in your process
!in(c, x:t); out(cwrite, x) where c is a public channel. This allows the adversary to send any
value of type t on channel cwrite, and can be done for several types if desired. When types are
ignored (the default), it in fact allows the adversary to send any value of any type on channel
cwrite.

• A channel cread on which the adversary can read but not write can be encoded as follows:
declare cread as a private channel by free cread:channel [private]. and add in your process
!in(cread, x:t); out(c, x) where c is a public channel. This allows the adversary to obtain any
value of type t sent on channel cread, and can be done for several types if desired. As above, when
types are ignored, it in fact allows the adversary to obtain any value sent on channel cread.

Memory cell

One can encode a memory cell in which one can read and write. We declare three private channels: one
for the cell itself, one for reading and one for writing in the cell.

free c e l l , cread , cwr i t e : channel [ private ] .

and include the following process

out ( c e l l , init ) |
( ! in ( c e l l , x : t ) ; in ( cwr i te , y : t ) ; out ( c e l l , y ) ) |
( ! in ( c e l l , x : t ) ; out ( cread , x ) ; out ( c e l l , x ) )

where t is the type of the content of the cell, and init is its initial value. The current value of the cell is
the one available as an output on channel cell . We can then write in the cell by outputting on channel
cwrite and read from the cell by reading on channel cread.

We can give the adversary the capability to read and/or write the cell by defining cread as a channel
on which the adversary can read and/or cwrite as a channel on which the adversary can write, using the
asymmetric channels presented above.

It is important for the soundness of this encoding that one never reads on cwrite or writes on cread,
except in the code of the cell itself.

Due to the abstractions performed by ProVerif, such a cell is treated in an approximate way: all
values written in the cell are considered as a set, and when one reads the cell, ProVerif just guarantees



6.3. THEORY AND TRICKS 95

that the obtained value is one of the written values (not necessarily the last one, and not necessarily one
written before the read).

Interface for creating principals

Instead of creating two protocol participants A and B, it is also possible to define an interface so that
the adversary can create as many protocol participants as he wants with the parameters of its choice, by
sending appropriate messages on some channels.

In some sense, the interface provided in the model of Section 5.3 constitutes a limited example of
this technique: the attacker can start an initiator that has identity hI and that talks to responder hR

by sending the message (hI , hR) to the first input of processInitiator and it can start a responder that
has identity hR by sending that identity to the first input of processResponder.

A more complex interface can be defined for more complex protocols. Such an interface has been
defined for the JFK protocol, for instance. We refer the reader to [ABF07] (in particular Appendix B.3)
and to the files in examples/pitype/jfk for more information.

6.3.4 Sources of incompleteness

In order to prove protocols, ProVerif translates them internally into Horn clauses. This translation per-
forms safe abstractions that sometimes result in false counterexamples. We detail the main abstractions
in this section. We stress that these abstractions preserve soundness: if ProVerif claims that a property
is true or false, then this claim is correct. The abstractions only have as a consequence that ProVerif
sometimes says that a property “cannot be proved”, which is a “don’t know” answer.

Repetition of actions. The Horn clauses can be applied any number of times, so the translation
ignores the number of repetitions of actions. For instance, in the process

new k : key ; out ( c , senc ( senc ( s , k ) , k ) ) ;
in ( c , x : b i t s t r i n g ) ; out ( c , sdec (x , k ) )

where c is a public channel, s is a private free name which should be kept secret, and senc and sdec are
symmetric encryption and decryption respectively, ProVerif finds a false attack. It thinks that one can
decrypt senc(senc(s ,k),k) by sending it to the input, so that the process replies with senc(s ,k), and then
sending this message again to the input, so that the process replies with s. However, this is impossible
in reality because the input can be executed only once. The previous process has the same translation
into Horn clauses as the process

new k : key ; out ( c , senc ( senc ( s , k ) , k ) ) ;
! in ( c , x : b i t s t r i n g ) ; out ( c , sdec (x , k ) )

with an additional replication, and the latter process is subject to the attack outlined above.
This approximation is the main approximation made by ProVerif. In fact, for secrecy (and probably

also for basic non-injective correspondences), when all channels are public and the fresh names are
generated by new as late as possible, this is the only approximation [Bla05].

Position of new. The position of new in the process influences the internal representation of fresh
names in ProVerif: fresh names created by new are represented as functions of the inputs located above
that new. So the more the new are moved downwards in the process, the more arguments they have,
and in general the more precise and the more costly the analysis is. (See also Section 6.3.1 for additional
discussion of this point.)

Private channels. Private channels are a powerful tool for encoding many features in the pi calculus.
However, because of their power and complexity, they also lead to additional approximations in ProVerif.
In particular, when c is a private channel, the process P that follows out(c, M); P can be executed only
when some input listens on channel c; ProVerif does not take that into account and considers that P can
always be executed.
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Moreover, ProVerif just computes a set of messages sent on a private channel, and considers that any
input on that private channel can receive any of these messages (independently of the order in which
they are sent). This point can be considered as a particular case of the general approximation that
repetitions of actions are ignored: if a message has been sent on a private channel at some point, it may
be sent again later. Ignoring the number of repetitions of actions then tends to become more important
in the presence of private channels than with public channels only.

Let us consider for instance the process

new c : channel ; (out ( c ,M ) | in ( c , x : t ) ; in ( c , y : t ) ; P )

The process P cannot be executed, because a single message is sent on channel c, but two inputs must
be performed on that channel before being able to execute P . ProVerif cannot take that into account
because it ignores the number of repetitions of actions: the process above has the same translation into
Horn clauses as the variant with replication

new c : channel ; ( ( ! out ( c ,M ) ) | in ( c , x : t ) ; in ( c , y : t ) ; P )

which can execute P .
Similarly, the process

new c : channel ; (out ( c , s ) | in ( c , x : t ) ; out (d , c ) )

preserves the secrecy of s because the adversary gets the channel c too late to be able to obtain s.
However, ProVerif cannot prove this property because the translation treats it like the following variant

new c : channel ; ( ( ! out ( c , s ) ) | in ( c , x : t ) ; out (d , c ) )

with an additional replication, which does not preserve the secrecy of s.

Observational equivalence. In addition to the previous approximations, ProVerif makes further
approximations in order to prove observational equivalence. In order to show that P and Q are observa-
tionally equivalent, it proves that, at each step, P and Q reduce in the same way: the same branch of a
test or destructor application is taken, communications happen in both processes or in neither of them.
This property is sufficient for proving observational equivalence, but it is not necessary. For instance, in
a test

i f M = N then R1 else R2

if the then branch is taken in P and the else branch is taken in Q, then ProVerif cannot prove obser-
vational equivalence. However, P and Q may still be observationally equivalent if the adversary cannot
distinguish what R1 does from what R2 does.

Along similar lines, the biprocess

P = out ( c , choice [m, n ] ) | out ( c , choice [ n ,m] )

satisfies observational equivalence but ProVerif cannot show this: the first component of the parallel
composition outputs either m or n, and the adversary has these two names, so ProVerif cannot prove
observational equivalence because it thinks that the adversary can distinguish these two situations.
In fact, the difference in the first output is compensated by the second output, so that observational
equivalence holds. In this simple example, it is easy to prove observational equivalence by rewriting
the process into the structurally equivalent process out(c,choice[m,m]) | out(c,choice[n,n]) for which
ProVerif can obviously prove observational equivalence. It becomes more difficult when a configuration
similar to the one above happens in the middle of the execution of the process. Ben Smyth et al. are
working on an extension of ProVerif to tackle such cases [DRS08].

Limitations of attack reconstruction. Some limitations also come from attack reconstruction.
There is no attack reconstruction against nested correspondences. (ProVerif reconstructs attacks only
when the basic correspondence at the root of the nested correspondence fails.) The reconstruction of
attacks against injective correspondences is based on heuristics that sometimes fail. For observational
equivalences, ProVerif can reconstruct a trace that reaches the first point at which the two processes
start reducing differently. However, such a trace does not guarantee that observational equivalence is
wrong; for this reason, ProVerif never says that an observational equivalence is false.
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6.3.5 Misleading syntactic constructs

• In the following ProVerif code

i f . . . then

let x = . . . in

. . .
else

. . .

the else branch refers to let construct, not to the if . The constructs if , let, and get can all
have else branches, and else always refers to the latest one. This is true even if the else branch
of let can never be executed because the let always succeeds. Hence, the code above is correctly
indented as follows:

i f . . . then

let x = . . . in

. . .
else

. . .

and if the else branch refers to the if , parentheses must be used:

i f . . . then

(
l et x = . . . in

. . .
)
else

. . .

• When tc is a typeConverter function and types are ignored, the construct

l et tc ( x ) = M in . . . else . . .

is equivalent to

l et x = M in . . . else . . .

Hence, its else branch will be executed only if the evaluation of M fails. When M never fails, this
is clearly not what was intended.

• In patterns, identifiers without argument are always variables bound by the pattern. For instance,
consider

const c : b i t s t r i n g .

l et ( c , x ) = M in . . .

Even if c is defined before, c is redefined by the pattern-matching, and the pattern (c, x) matches
any pair. ProVerif displays a warning saying that c is rebound. If you want to refer to the constant
c in the pattern, please write:

const c : b i t s t r i n g .

l et (=c , x ) = M in . . .

The pattern (=c, x) matches pairs whose first component is equal to c. If you want to refer to a
data function without argument, the following syntax is also possible:
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const c : b i t s t r i n g [ data ] .

l et ( c ( ) , x ) = M in . . .

• The construct if M then P else Q does not catch failure inside the term M , that is, it executes
nothing when the evaluation of M fails. Its else branch is executed only when the evaluation of
M succeeds and its result is different from true.

In contrast, the construct let T = M in P else Q catches failure inside T and M . That is, its
else branch is executed when the evaluation of T or M fails, or when these evaluations succeed
and the result of M does not match T .

6.4 Compatibility with CryptoVerif

A long-term goal is to be able to use the same input files to be able to verify protocols both in ProVerif
and in CryptoVerif (a computationally-sound protocol verifier that can be downloaded from http://

cryptoverif.inria.fr). ProVerif proves protocols in the formal model and can reconstruct attacks,
while CryptoVerif proves protocols in the computational model. CryptoVerif proofs are more satisfactory,
because they rely on a less abstract model, but CryptoVerif is more difficult to use and less widely
applicable than ProVerif, and it cannot reconstruct attacks, so these two tools are complementary.

It is not yet possible to use the same input files for both tools, but the typed front-end of ProVerif is
a first step towards this goal. It already provides some features designed for CryptoVerif compatibility.

In particular, it allows to use macros for defining the security assumptions on primitives. One can
define a macro name(i1, . . . , in) by

def name( i1, . . . , in ) {
declarations

}

Then expand name(a1, . . . , an). expands to the declarations inside def with a1, . . . an substituted for
i1, . . . , in. As an example, we can define block ciphers by

def SPRP cipher ( keyseed , key , b l o ck s i z e , kgen , enc , dec , Penc ) {

fun enc ( b l o ck s i z e , key ) : b l o c k s i z e .
fun kgen ( keyseed ) : key .
fun dec ( b l o ck s i z e , key ) : b l o c k s i z e .

equation fora l l m: b l o ck s i z e , r : keyseed ;
dec ( enc (m, kgen ( r ) ) , kgen ( r ) ) = m.

equation fora l l m: b l o ck s i z e , r : keyseed ;
enc ( dec (m, kgen ( r ) ) , kgen ( r ) ) = m.

}

SPRP stands for Super Pseudo-Random Permutation, a standard computational assumption on block
ciphers; here, the ProVerif model tries to be close to this assumption, even if it is probably stronger.
Penc is the probability of breaking this assumption; it makes sense only for CryptoVerif, but the goal to
use the same macros with different definitions in ProVerif and in CryptoVerif.

We can then declare a block cipher by

expand SPRP cipher ( keyseed , key , b l o ck s i z e , kgen , enc , dec , Penc ) .

without repeating the whole definition.
The definitions of macros are typically stored in a library. Such a library can be specified by the

command-line option -lib. The file cryptoverif.pvl (at the root of the ProVerif distribution) is an
example of such a library. It can be included by calling

proverif -lib cryptoverif MyFile.pv
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ProVerif also supports but ignores the CryptoVerif declarations param, proba, and proof. It sup-
ports options after a type declaration, as in type t [option]. These options are ignored. It supports
channel c1, . . . , cn. as a synonym of free c1, . . . , cn: channel. (Only the former is supported by Cryp-
toVerif.) It supports yield as a synonym of 0. It allows ! i <= n instead of just !. (CryptoVerif uses
the former.) An example of a protocol written with CryptoVerif compatibility in mind can be found in
subdirectory examples/cryptoverif/.
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Chapter 7

Outlook

The ProVerif software tool is the result of more than a decade of theoretical research. This manual
explained how to use ProVerif in practice. More information on the theory behind ProVerif can be found
in research papers:

• For the verification of secrecy as reachability, we recommend [Bla10, AB05a].

• For the verification of correspondences, we recommend [Bla09].

• For the verification of strong secrecy, see [Bla04]; for observational equivalence, guessing attacks,
and the treatment of equations, see [BAF08].

• For the reconstruction of attacks, see [AB05c].

• For the termination result on tagged protocols, see [BP05].

• Case studies can be found in [AB05b, ABF07, BC08].

ProVerif is a powerful tool for verifying protocols in formal model. It works for an unbounded
number of sessions and an unbounded message space. It supports many cryptographic primitives defined
by rewrite rules or equations. It can prove various security properties: reachability, correspondences, and
observational equivalences. These properties are particularly interesting to the security domain because
they allow analysis of secrecy, authentication, and privacy properties. It can also reconstruct attacks
when the desired properties do not hold.

However, ProVerif performs abstractions, so there are situations in which the property holds and
cannot be proved by ProVerif. Moreover, proofs of security properties in ProVerif abstract away from
details of the cryptography, and therefore may not in general be sound with respect to the computational
model of cryptography. The CryptoVerif tool (http://cryptoverif.inria.fr), an automatic prover
for security properties in the computational security model, aims to address this problem.
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Appendix A

Language reference

In this appendix, we provide a reference for the typed pi calculus input language of ProVerif. We adopt
the following conventions. X∗ means any number of repetitions of X; and [X] means X or nothing.
seq〈X〉 is a sequence of X, that is, seq〈X〉 = [(〈X〉,)∗〈X〉] = 〈X〉, . . . ,〈X〉. (The sequence can be empty,
it can be one element, or it can be several elements separated by commas.) seq+〈X〉 is a non-empty
sequence of X: seq+〈X〉 = (〈X〉,)∗〈X〉 = 〈X〉, . . . ,〈X〉. (It can be one or several elements of 〈X〉
separated by commas.) Text in typewriter style should appear as it is in the input file. Text between 〈
and 〉 represents non-terminals of the grammar. In particular, we will use:

• 〈ident〉 to denote identifiers (Section 3.1.4) which range over an unlimited sequence of letters (a-z,
A-Z), digits (0-9), underscores ( ), single-quotes (’), and accented letters from the ISO Latin 1
character set where the first character of the identifier is a letter and the identifier is distinct from
the reserved words of the language.

• 〈int〉 to range over integers.

• 〈typeid〉 to denote types (Section 3.1.1), which can be identifiers 〈ident〉 or the reserved word
channel.

• 〈options〉 ::= [[seq+〈ident〉]], where the allowed identifiers in the sequence are data, private, and
typeConverter for the fun and const declarations, private for the reduc and free declarations,
memberOptim and block for the pred declaration.

The input file consists of a list of declarations, followed by the keyword process and a process:

〈declaration〉∗ process 〈process〉

or a list of declarations followed by an equivalence query between two processes (see end of Section 4.3.2):

〈declaration〉∗ equivalence 〈process〉 〈process〉

Libraries (loaded with the command-line option -lib) are lists of declarations 〈declaration〉∗.
We start by presenting the grammar for terms in Figure A.1. The grammar for declarations is

considered in Figure A.2. Finally, Figure A.6 covers the grammar for processes.
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Figure A.1 Grammar for terms (see Sections 3.1.4 and 4.1.3)

〈term〉 ::= 〈ident〉

| (seq〈term〉)

| 〈ident〉(seq〈term〉)

| 〈term〉 = 〈term〉

| 〈term〉 <> 〈term〉

| 〈term〉 && 〈term〉

| 〈term〉 || 〈term〉

| not (〈term〉)

〈pterm〉 ::= 〈ident〉

| (seq〈pterm〉)

| 〈ident〉(seq〈pterm〉)

| choice[〈pterm〉,〈pterm〉] (see Section 4.3.2)

| 〈pterm〉 = 〈pterm〉

| 〈pterm〉 <> 〈pterm〉

| 〈pterm〉 && 〈pterm〉

| 〈pterm〉 || 〈pterm〉

| not (〈pterm〉)

| new 〈ident〉: 〈typeid〉; 〈pterm〉

| if 〈pterm〉 then 〈pterm〉 [else 〈pterm〉]

| let 〈pattern〉 = 〈pterm〉 in 〈pterm〉 [else 〈pterm〉]

| let 〈typedecl〉 suchthat 〈pterm〉 in 〈pterm〉 [else 〈pterm〉] (see Section 6.1.1)

〈pattern〉 ::= 〈ident〉

| 〈ident〉: 〈typeid〉

| (seq〈pattern〉)

| 〈ident〉(seq〈pattern〉)

| =〈pterm〉

〈mayfailterm〉 ::= 〈term〉

| fail

〈typedecl〉 ::= 〈ident〉: 〈typeid〉[,〈typedecl〉]

〈failtypedecl〉 ::= 〈ident〉: 〈typeid〉[or fail][,〈failtypedecl〉]

The precedences of infix symbols, from low to high, are: ||, &&, =, <>. The grammar of terms 〈term〉 is
further restricted after parsing. In reduc and equation declarations, the only allowed function symbols
are constructors, so ||, &&, =, <>, not are not allowed, and names are not allowed as identifiers. In
noninterf declarations, the only allowed function symbols are constructors and names are allowed as
identifiers. In elimtrue declarations, the term can only be a fact of the form p(M1, . . . ,Mk) for some
predicate p; names are not allowed as identifiers. In clauses (Figure A.5), the hypothesis of clauses can
be conjunctions of facts of the form p(M1, . . . ,Mk) for some predicate p, equalities, or inequalities; the
conclusion of clauses can only be a fact of the form p(M1, . . . ,Mk) for some predicate p; names are not
allowed as identifiers.
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Figure A.2 Grammar for declarations

〈declaration〉 ::= type 〈ident〉 〈options〉. (see Section 3.1.1)

| channel seq+〈ident〉. (see Section 6.4)

| free seq+〈ident〉: 〈typeid〉 〈options〉. (see Section 3.1.1)

| const seq+〈ident〉: 〈typeid〉 〈options〉. (see Section 4.1.1)

| fun 〈ident〉(seq〈typeid〉): 〈typeid〉 〈options〉. (see Section 3.1.1)

| letfun 〈ident〉[([〈typedecl〉])] = 〈pterm〉. (see Section 4.2.3)

| reduc 〈reduc〉 〈options〉. (see Section 3.1.1)

where 〈reduc〉 ::= [forall 〈typedecl〉;] 〈term〉 = 〈term〉 [; 〈reduc〉]

| fun 〈ident〉(seq〈typeid〉): 〈typeid〉 reduc 〈reduc’〉 options. (see Section 4.2.1)

where 〈reduc’〉 ::= [forall 〈failtypedecl〉;]〈ident〉(seq〈mayfailterm〉) = 〈mayfailterm〉

[otherwise 〈reduc’〉]

| equation 〈eqlist〉 〈options〉. (see Section 4.2.2)

where 〈eqlist〉 ::= [forall 〈typedecl〉 ;] 〈term〉 = 〈term〉 [;〈eqlist〉]

| pred 〈ident〉[(seq〈typeid〉)] 〈options〉. (see Section 6.1.1)

| table 〈ident〉(seq〈typeid〉). (see Section 4.1.4)

| let 〈ident〉[([〈typedecl〉])] = 〈process〉. (see Section 3.1.3)

where 〈process〉 is specified in Figure A.6.

| set 〈name〉 = 〈value〉. (see Section 6.2.2)

where the possible values of 〈name〉 and 〈value〉 are listed in Section 6.2.2.

| event 〈ident〉[(seq〈typeid〉)]. (see Section 3.2.2)

| query [〈typedecl〉;] 〈query〉. (see Sections 3.2 and 4.3.1)

where 〈query〉 is defined in Figure A.3.

| noninterf [〈typedecl〉;] seq〈nidecl〉. (see Section 4.3.2)

where 〈nidecl〉 ::= 〈ident〉 [among (seq+〈term〉)]

| weaksecret 〈ident〉. (see Section 4.3.2)

| not [〈typedecl〉;] 〈gterm〉. (see Section 6.3.1)

where 〈gterm〉 is defined in Figure A.3.

| nounif [〈typedecl〉;] 〈nounifdecl〉. (see Section 6.3.1)

where 〈nounifdecl〉 is defined in Figure A.4.

| elimtrue [〈failtypedecl〉;] 〈term〉. (see Section 6.1.1)

| clauses 〈clauses〉. (see Section 6.1.1)

where 〈clauses〉 is defined in Figure A.5.

| param seq+〈ident〉 〈options〉. (see Section 6.4)

| proba 〈ident〉. (see Section 6.4)

| proof {〈proof〉} (see Section 6.4)

| def 〈ident〉(seq〈typeid〉) {〈declaration〉∗} (see Section 6.4)

| expand 〈ident〉(seq〈typeid〉). (see Section 6.4)
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Figure A.3 Grammar for not (see Section 6.3.1) and queries (see Sections 3.2 and 4.3.1)

〈query〉 ::= 〈gterm〉 [; 〈query〉]

| putbegin event:seq+〈ident〉 [; 〈query〉] (see Section 6.1.3)

| putbegin inj-event:seq+〈ident〉 [; 〈query〉] (see Section 6.1.3)

〈gterm〉 ::= 〈ident〉

| 〈ident〉(seq〈gterm〉) [phase 〈int〉]

| 〈gterm〉 = 〈gterm〉

| 〈gterm〉 <> 〈gterm〉

| 〈gterm〉 || 〈gterm〉

| 〈gterm〉 && 〈gterm〉

| event(seq〈gterm〉)

| inj-event(seq〈gterm〉)

| 〈gterm〉 ==> 〈gterm〉

| (seq〈gterm〉)

| new 〈ident〉[[[〈gbinding〉]]] (see Section 6.1.2)

| let 〈ident〉 = 〈gterm〉 in 〈gterm〉 (see Section 6.1.2)

〈gbinding〉 ::= !〈int〉 = 〈gterm〉 [; 〈gbinding〉]

| 〈ident〉 = 〈gterm〉 [; 〈gbinding〉]

The precedences of infix symbols, from low to high, are: ==>, ||, &&, =, <>. The grammar above is
useful to know exactly how terms are parsed and where parentheses are needed. However, it is further
restricted after parsing, so that the grammar of 〈gterm〉 in queries is in fact the one of q below and the
grammar of 〈gterm〉 in not declarations is the one of F excluding events, equalities, and inequalities:

q ::= query
F fact
F ==> H correspondence
let x = M in q let binding, see Section 6.1.2

H ::= hypothesis
F fact
H && H conjunction
H || H disjunction
F ==> H nested correspondence
let x = M in H let binding, see Section 6.1.2

F ::= fact
attacker(M) the adversary has M (in any phase)
attacker(M) phase n the adversary has M in phase n
mess(N,M) M is sent on channel N (in the last phase)
mess(N,M) phase n M is sent on channel N in phase n
event(e(M1, . . . ,Mn)) non-injective event
inj−event(e(M1, . . . ,Mn)) injective event
M=N equality
M<>N inequality
p(M1, . . . ,Mn) user-defined predicate, see Section 6.1.1
let x = M in F let binding, see Section 6.1.2

M,N ::= term
x, a, c variable, free name, or constant
f(M1, . . . ,Mn) constructor application
(M1, . . . ,Mn) tuple
new a[g1 = M1, . . ., gk = Mk] bound name (g ::= !n | x), see Section 6.1.2
let x = M in N let binding, see Section 6.1.2
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Figure A.4 Grammar for nounif (see Section 6.3.1)

〈nounifdecl〉 ::= let 〈ident〉 = 〈gformat〉 in 〈nounifdecl〉

| 〈ident〉[(seq〈gformat〉) [phase 〈int〉] ] [/〈int〉]

〈gformat〉 ::= 〈ident〉

| *〈ident〉

| 〈ident〉(seq〈gformat〉)

| not(seq〈gformat〉)

| (seq〈gformat〉)

| new 〈ident〉[[[〈fbinding〉]]]

| let 〈ident〉 = 〈gformat〉 in 〈gformat〉

〈fbinding〉 ::= !〈int〉 = 〈gformat〉 [; 〈fbinding〉]

| 〈ident〉 = 〈gformat〉 [; 〈fbinding〉]

Figure A.5 Grammar for clauses (see Section 6.1.1)

〈clauses〉 ::= [forall 〈failtypedecl〉;] 〈clause〉 [; 〈clauses〉]

〈clause〉 ::= 〈term〉

| 〈term〉 -> 〈term〉

| 〈term〉 <-> 〈term〉

| 〈term〉 <=> 〈term〉
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Figure A.6 Grammar for processes (see Section 3.1.4)

〈process〉 ::= 0

| yield (see Section 6.4)

| 〈ident〉[(seq〈pterm〉)]

| (〈process〉)

| 〈process〉 | 〈process〉

| !〈process〉

| ! 〈ident〉 <= 〈ident〉 〈process〉 (see Section 6.4)

| new 〈ident〉[[seq〈ident〉]]: 〈typeid〉; 〈process〉

| if 〈pterm〉 then 〈process〉 [else 〈process〉]

| in(〈pterm〉,〈pattern〉) [; 〈process〉]

| out(〈pterm〉,〈pterm〉)) [; 〈process〉]

| let 〈pattern〉 = 〈pterm〉 [in 〈process〉 [else 〈process〉]]

| let 〈typedecl〉 suchthat 〈pterm〉 [in 〈process〉 [else 〈process〉]] (see Section 6.1.1)

| insert 〈ident〉(seq〈pterm〉) [; 〈process〉] (see Section 4.1.4)

| get 〈ident〉(seq〈pattern〉) [suchthat 〈pterm〉] [in 〈process〉 [else 〈process〉]]
(see Section 4.1.4)

| event 〈ident〉[(seq〈pterm〉)] [; 〈process〉] (see Section 3.2.2)

| phase 〈int〉 [; 〈process〉] (see Section 4.1.5)

| sync 〈int〉 [[〈tag〉]] [; 〈process〉] (see Section 4.1.6)
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