Acknowledgements

This manual was written with support from the Direction Générale pour l’Armement (DGA) and the EPSRC project UbiVal (EP/D076625/2). ProVerif was developed while Bruno Blanchet was affiliated with INRIA Paris-Rocquencourt, with CNRS, Ecole Normale Supérieure, Paris, and with Max-Planck-Institut für Informatik, Saarbrücken. This manual was written while Bruno Blanchet was affiliated with INRIA Paris-Rocquencourt and with CNRS, Ecole Normale Supérieure, Paris, Ben Smyth was affiliated with Ecole Normale Supérieure, Paris and with University of Birmingham, and Vincent Cheval was affiliated with CNRS. The development of ProVerif would not have been possible without the helpful remarks from the research community; their contributions are greatly appreciated and further feedback is encouraged.
Contents

5 **Needham-Schroeder: Case study**

5.1 Simplified Needham-Schroeder protocol .. 50
 5.1.1 Basic encoding .. 50
 5.1.2 Security properties ... 51
5.2 Full Needham-Schroeder protocol .. 54
5.3 Generalized Needham-Schroeder protocol 56
5.4 Variants of these security properties ... 60
 5.4.1 A variant of mutual authentication 60
 5.4.2 Authenticated key exchange ... 63
 5.4.3 Full ordering of the messages ... 69

6 **Advanced reference**

6.1 Advanced modeling features and security properties 73
 6.1.1 Predicates ... 73
 6.1.2 Referring to bound names in queries 76
 6.1.3 Exploring correspondence assertions 78
6.2 ProVerif options ... 78
 6.2.1 Command-line arguments .. 79
 6.2.2 Settings ... 80
6.3 Theory and tricks ... 85
 6.3.1 Performance and termination .. 86
 6.3.2 Alternative encodings of protocols 89
 6.3.3 Applied pi calculus encodings ... 91
 6.3.4 Sources of incompleteness .. 92
6.4 Compatibility with CryptoVerif ... 94

7 **Outlook**

A **Language reference**

97
List of Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Handshake protocol</td>
<td>10</td>
</tr>
<tr>
<td>3.2</td>
<td>Term and process grammar</td>
<td>14</td>
</tr>
<tr>
<td>3.3</td>
<td>Pattern matching grammar</td>
<td>14</td>
</tr>
<tr>
<td>3.4</td>
<td>Messages and events for authentication</td>
<td>19</td>
</tr>
<tr>
<td>4.1</td>
<td>Enriched terms grammar</td>
<td>28</td>
</tr>
<tr>
<td>4.2</td>
<td>Grammar for correspondence assertions</td>
<td>39</td>
</tr>
<tr>
<td>A.1</td>
<td>Grammar for terms</td>
<td>98</td>
</tr>
<tr>
<td>A.2</td>
<td>Grammar for declarations</td>
<td>99</td>
</tr>
<tr>
<td>A.3</td>
<td>Grammar for <code>not</code> and queries</td>
<td>100</td>
</tr>
<tr>
<td>A.4</td>
<td>Grammar for <code>nounif</code></td>
<td>101</td>
</tr>
<tr>
<td>A.5</td>
<td>Grammar for <code>clauses</code></td>
<td>101</td>
</tr>
<tr>
<td>A.6</td>
<td>Grammar for processes</td>
<td>102</td>
</tr>
</tbody>
</table>
Chapter 1

Introduction

This manual describes the ProVerif software package version 1.92. ProVerif is a tool for automatically analyzing the security of cryptographic protocols. Support is provided for, but not limited to, cryptographic primitives including: symmetric and asymmetric encryption; digital signatures; hash functions; bit-commitment; and non-interactive zero-knowledge proofs. ProVerif is capable of proving reachability properties, correspondence assertions, and observational equivalence. These capabilities are particularly useful to the computer security domain since they permit the analysis of secrecy and authentication properties. Moreover, emerging properties such as privacy, traceability, and verifiability can also be considered. Protocol analysis is considered with respect to an unbounded number of sessions and an unbounded message space. Moreover, the tool is capable of attack reconstruction: when a property cannot be proved, ProVerif tries to reconstruct an execution trace that falsifies the desired property.

1.1 Applications of ProVerif

The applicability of ProVerif has been widely demonstrated. Protocols from the literature have been successfully analyzed: flawed and corrected versions of Needham-Schroeder public-key [NS78, Low96] and shared key [NS78, BAN89, NS87]; Woo-Lam public-key [WL92, WL97] and shared-key [WL92, AN95, AN96, WL97, GJ03]; Denning-Sacco [DS81, AN96]; Yahalom [BAN89]; Otway-Rees [OR87, AN96, Pau98]; and Skeme [Kra96]. The resistance to password guessing attacks has been demonstrated for the password-based protocols EKE [BM92] and Augmented EKE [BM93].

ProVerif has also been used in more substantial case studies:

• Abadi & Blanchet [AB05b] used correspondence assertions to verify the certified email protocol [AGHP02].

• Abadi, Blanchet & Fournet [ABF07] analyze the JFK (Just Fast Keying) [ABB+04] protocol, which was one of the candidates to replace IKE as the key exchange protocol in IPSec, by combining manual proofs with ProVerif proofs of correspondences and equivalences.

• Blanchet & Chaudhuri [BC08] studied the integrity of the Plutus file system [KRS+03] on untrusted storage, using correspondence assertions, resulting in the discovery, and subsequent fixing, of weaknesses in the initial system.

• Bhargavan et al. [BFGT06, BFG06, BFGS08] use ProVerif to analyze cryptographic protocol implementations written in F#; in particular, the Transport Layer Security (TLS) protocol has been studied in this manner [BCFZ08].

• Chen & Ryan [CR09] have evaluated authentication protocols found in the Trusted Platform Module (TPM), a widely deployed hardware chip, and discovered vulnerabilities.

• Delaune, Kremer & Ryan [DKR09, KR05] and Backes, Hritcu & Maffei [BHM08] formalize and analyze privacy properties for electronic voting using observational equivalence.
• Delaune, Ryan & Smyth [DRS08] and Backes, Maffei & Unruh [BMU08] analyze the anonymity properties of the trusted computing scheme Direct Anonymous Attestation (DAA) [BCC04, SRC07] using observational equivalence.

• Küsters & Truderung [KT09, KT08] examine protocols with Diffie-Hellman exponentiation and XOR.

For further examples, please refer to: http://proverif.inria.fr/proverif-users.html.

1.2 Scope of this manual

This manual provides an introductory description of the ProVerif software package version 1.92. The remainder of this chapter covers software support (Section 1.3) and installation (Section 1.4). Chapter 2 provides an introduction to ProVerif aimed at new users, advanced users may skip this chapter without loss of continuity. Chapter 3 demonstrates the basic use of ProVerif. Chapter 4 provides a more complete coverage of the features of ProVerif. Chapter 5 demonstrates the applicability of ProVerif with a case study. Chapter 6 considers advanced topics and Chapter 7 concludes. For reference, the complete grammar of ProVerif is presented in Appendix A. This manual does not attempt to describe the theoretical foundations of the internal algorithms used by ProVerif since these are available elsewhere (see Chapter 7 for references); nor is the applied pi calculus [AF01, RS10], which provides the basis for ProVerif, discussed.

1.3 Support

Software bugs and comments should be reported by e-mail to:

Bruno.Blanchet@inria.fr

User support, general discussion and new release announcements are provided by the ProVerif mailing list. To subscribe to the list, send an email to sympa@inria.fr with the subject “subscribe proverif” (without quotes). To post on the list, send an email to:

proverif@inria.fr

Non-members are not permitted to send messages to the mailing list.

1.4 Installation

ProVerif is compatible with the Linux, Mac, and Windows operating systems; it can be downloaded from:

http://proverif.inria.fr/

ProVerif has been developed using Objective Caml (OCaml), accordingly OCaml version 3.0 or higher is a prerequisite to installation\(^1\) and can be downloaded from http://caml.inria.fr/. OCaml provides a byte-code compiler (ocamlc) and a native-code compiler (ocamlopt). Although ProVerif does not strictly require the native-code compiler, it is highly recommended to achieve large performance gains. Furthermore, on Mac OS X, you need to install XCode if you do not already have it. It can be downloaded from https://developer.apple.com/xcode/. The remainder of this section covers installation on Linux, Mac, and Windows platforms.

\(^1\)Windows users can make use of the ProVerif binary distribution and hence do not require OCaml.
1.4. INSTALLATION

1.4.1 Linux/Mac installation

1. Decompress the archives:

 (a) using GNU tar

   ```
   tar -xzf proverif1.92.tar.gz
   tar -xzf proverifdoc1.92.tar.gz
   ```

 (b) using tar

   ```
   gunzip proverif1.92.tar.gz
   tar -xf proverif1.92.tar
   gunzip proverifdoc1.92.tar.gz
   tar -xf proverifdoc1.92.tar
   ```

 This will create a directory `proverif1.92` in the current directory.

2. You are now ready to build ProVerif:

   ```
   cd proverif1.92
   ./build
   ```

3. ProVerif has now been successfully installed.

1.4.2 Windows installation

Windows users may install ProVerif using either the binary (recommended) or source distribution. Note that the binary installation does not require OCaml to be installed.

From binary

1. Decompress the `proverifbsd1.92.tar.gz` and `proverifdoc1.92.tar.gz` archives in the same directory using your favorite file archive tool (e.g. WinZip).

2. ProVerif has now been successfully installed in the directory where the file was extracted.

From source.

1. Decompress the `proverif1.92.tar.gz` and `proverifdoc1.92.tar.gz` archives in the same directory using your favorite file archive tool (e.g. WinZip).

2. Open a command shell and change to the directory where the file was extracted.

3. You are now ready to build ProVerif:

   ```
   ./build.bat
   ```

4. ProVerif has now been successfully installed.

Note: this installation procedure, using the `build.bat` script, relies on the OCaml bytecode compiler, which works in all Windows installations. If you have installed cygwin and want to install from source, you should rather use the Linux/Mac installation procedure, which allows you to use the OCaml native code compiler.
1.4.3 **Emacs**

If you use the emacs text editor for editing ProVerif input files, you can install the emacs mode provided with the ProVerif distribution.

1. Copy the file *emacs/proverif.el* to a directory where Emacs will find it (that is, in your emacs load-path).

2. Add the following lines to your `.emacs` file:

```lisp
(setq auto-mode-alist
  (cons '("\.horn$" . proverif-horn-mode)
    (cons '("\.horntype$" . proverif-horntype-mode)
    (cons '("\.pv$" . proverif-pv-mode)
    (cons '("\.pi$" . proverif-pi-mode) auto-mode-alist))))
(autoload 'proverif-pv-mode "proverif" "Major mode for editing ProVerif code." t)
(autoload 'proverif-pi-mode "proverif" "Major mode for editing ProVerif code." t)
(autoload 'proverif-horn-mode "proverif" "Major mode for editing ProVerif code." t)
(autoload 'proverif-horntype-mode "proverif" "Major mode for editing ProVerif code." t)
```

1.5 **Copyright**

ProVerif software (source) is distributed under the GNU general public license. For details see:

http://proverif.inria.fr/LICENSEGPL

The Windows binary distribution is under BSD license, for details see:

http://proverif.inria.fr/LICENSEBSD
Chapter 2

Getting started

This chapter provides a basic introduction to ProVerif and is aimed at new users; experienced users may choose to skip this chapter. ProVerif is a command-line tool which can be executed using the syntax:

```
./proverif [options] (filename)
```

where `./proverif` is ProVerif’s binary; `(filename)` is the input file; and command-line parameters `[options]` will be discussed later (Section 6.2.1). ProVerif can handle input files encoded in several languages. The typed pi calculus is currently considered to be state-of-the-art and files of this sort are denoted by the file extension `.pv`. This manual will focus on protocols encoded in the typed pi calculus. (For the interested reader, other input formats are mentioned in Section 6.2.1 and in `docs/manual-untyped.pdf`.) The pi calculus is designed for representing concurrent processes that interact using communications channels such as the Internet.

ProVerif is capable of proving reachability properties, correspondence assertions, and observational equivalence. This chapter will demonstrate the use of reachability properties and correspondence assertions in a very basic manner. The true power of ProVerif will be discussed in the remainder of this manual.

Reachability properties. Let us consider the ProVerif script:

```
1 (* hello.pv: Hello World Script *)
2
3 free c: channel.
4
5 free Cocks: bitstring [private].
6 free RSA: bitstring [private].
7
8 process
9   out(c, RSA);
10 0
```

Line 1 contains the comment “hello.pv: Hello World Script”; comments are enclosed by (* comment *). Line 3 declares the free name `c` of type channel which will later be used for public channel communication. Lines 5 and 6 declare the free names Cocks and RSA of type bitstring; the keyword [private] excludes the names from the adversary’s knowledge. Line 10 declares the start of the main process. Line 11 outputs the name RSA on the channel `c`. Finally, the termination of the process is denoted by 0 on Line 12.

Names may be of any type, but we explicitly distinguish names of type channel from other types, since the former may be used as a communications channel for message input/output. The concept of bound and free names is similar to local and global scope in programming languages; that is, free names are globally known, whereas bound names are local to a process. By default, free names are known by the adversary. Free names that are not known by the adversary must be declared private with the addition of the keyword [private]. The message output on Line 11 is broadcast using a public channel.
because the channel name \(c \) is a free name; whereas, if \(c \) were a bound name or explicitly excluded from the adversary’s knowledge, then the communication would be on a *private channel*. For convenience, the final line may be omitted and hence \(\text{out}(c, \text{RSA}) \) is an abbreviation of \(\text{out}(c, \text{RSA}):0 \).

Properties of the aforementioned script can be examined using ProVerif. For example, to test as to whether the names Cocks and RSA are available derivable by the adversary, the following lines can be included before the main process:

7 \textbf{query attacker(RSA)}.
8 \textbf{query attacker(Cocks)}.

Internally, ProVerif attempts to prove that a state in which the names Cocks and RSA are known to the adversary is unreachable (that is, it tests the queries \textbf{not attacker(RSA)} and \textbf{not attacker(Cocks)}, and these queries are true when the names are \textit{not} derivable by the adversary). This makes ProVerif suitable for proving the secrecy of terms in a protocol.

Executing ProVerif (.\text{./proverif docs/hello.pv}) produces the output:

\begin{verbatim}
Process:
{1}out(c, RSA)

-- Query not attacker(Cocks[])
Completing...
Starting query not attacker(Cocks[])
RESULT not attacker(Cocks[]) is true.
-- Query not attacker(RSA[])
Completing...
Starting query not attacker(RSA[])
goal reachable: attacker(RSA[])

1. The message RSA[] may be sent to the attacker at output {1}. attacker(RSA[]).

A more detailed output of the traces is available with
set traceDisplay = long.

out(c, RSA) at {1}
The attacker has the message RSA.
a trace has been found.
RESULT not attacker(RSA[]) is false.
\end{verbatim}

As can be interpreted from \textbf{RESULT not attacker:(Cocks[])} \textbf{is true}, the attacker has not been able to obtain the free name Cocks. The attacker has, however, been able to obtain the free name RSA as denoted by the \textbf{RESULT not attacker:(RSA[])} \textbf{is false}. ProVerif is also able to provide an attack trace. In this instance, the trace is very short and denoted by a single line \textbf{out(c, RSA)} at \{1\} which means that the name RSA is output on channel \(c \) at point \{1\} in the process, where point \{1\} is annotated on Line 2 of the output. ProVerif also provides an English language description of the \textit{derivation} denoted by “1. The message RSA[] may be sent to the attacker at output \{1\}.” (A derivation is the ProVerif internal representation of how the attacker may break the desired property, here may obtain RSA. It generally corresponds to an attack as in the example above, but may sometimes correspond to a false attack because of the internal approximations made by ProVerif. In contrast, when ProVerif presents a trace, it always corresponds to a real attack. See Section 3.3 for more details.)

Correspondence assertions. Let us now consider an extended variant \texttt{docs/hello_ext.pv} of the script:

1 (* \texttt{hello_ext.pv}: \textit{Hello Extended World Script} *)
Lines 1-7 should be familiar. Lines 8-9 declare events evCocks and evRSA. Intuition suggests that Line 11 is some form of query. Lines 13-14 should again be standard. Line 15 contains a message input of type bitstring on channel c which it binds to the variable x. Lines 16-20 denote an if-then-else statement; the body of the then branch can be found on Lines 17-18 and the else branch on Line 20. We remark that the code presented is a shorthand for the more verbose

```plaintext
if x = Cocks then event evCocks; event evRSA:0 else event evRSA:0
```

where 0 denotes the end of a branch (termination of a process). The statement event evCocks (similarly event evRSA) declares an event and the query

```plaintext
query event(evCocks) ==> event(evRSA)
```

is true if and only if, for all executions of the protocol, if the event evCocks has been executed, then the event evRSA has also been executed before. Executing the script produces the output:

```
Process:
{1} out(c, RSA);
{2} in(c, x: bitstring);
{3} if (x = Cocks) then
    {4} event evCocks;
    {5} event evRSA
else
    {6} event evRSA
-- Query event(evCocks) ==> event(evRSA)
Completing...
Starting query event(evCocks) ==> event(evRSA)
RESULT event(evCocks) ==> event(evRSA) is true.
```

As expected, it is not possible to witness the event evCocks without having previously executed the event evRSA and hence the correspondence event(evCocks) ==> event(evRSA) is true. In fact, a stronger property is true: the event evCocks is unreachable. The reader can verify this claim with the addition of query event(evCocks). (The authors remark that writing code with unreachable points is a common source of errors for new users. Advice on avoiding such pitfalls will be presented in Section 4.3.1.)
Chapter 3

Using ProVerif

The primary goal of ProVerif is the verification of cryptographic protocols. Cryptographic protocols are concurrent programs which interact using public communication channels such as the Internet to achieve some security-related objective. These channels are assumed to be controlled by a very powerful environment which captures an attacker with “Dolev-Yao” capabilities [DY83]. Since the attacker has complete control of the communication channels, the attacker may: read, modify, delete, and inject messages. The attacker is also able to manipulate data, for example: compute the ith element of a tuple; and decrypt messages if it has the necessary keys. The environment also captures the behavior of dishonest participants; it follows that only honest participants need to be modeled. ProVerif’s input language allows such cryptographic protocols and associated security objectives to be encoded in a formal manner, allowing ProVerif to automatically verify claimed security properties. Cryptography is assumed to be perfect; that is, the attacker is only able to perform cryptographic operations when in possession of the required keys. In other words, it cannot apply any polynomial-time algorithm, but is restricted to apply only the cryptographic primitives specified by the user. The relationships between cryptographic primitives are captured using rewrite rules and/or an equational theory.

In this chapter, we demonstrate how to use ProVerif for verifying cryptographic protocols, by considering a naïve handshake protocol (Figure 3.1) as an example. Section 3.1 discusses how cryptographic protocols are encoded within ProVerif’s input language, a variant of the applied pi calculus [AF01, RS10] which supports types; Section 3.2 shows the security properties that can be proved by ProVerif; and Section 3.3 explains how to understand ProVerif’s output.

3.1 Modeling protocols

A ProVerif model of a protocol, written in the tool’s input language (the typed pi calculus), can be divided into three parts. The declarations formalize the behavior of cryptographic primitives (Section 3.1.1); and their use is demonstrated on the handshake protocol (Section 3.1.2). Process macros (Section 3.1.3) allow sub-processes to be defined, in order to ease development; and finally, the protocol itself can be encoded as a main process (Section 3.1.4), with the use of macros.

3.1.1 Declarations

Processes are equipped with a finite set of types, free names, and constructors (function symbols) which are associated with a finite set of destructors. The language is strongly typed and user-defined types are declared as

```
    type t.
```

All free names appearing within an input file must be declared using the syntax

```
    free n : t.
```

where n is a name and t is its type. The syntax channel c. is a synonym for free c: channel. By default, free names are known by the adversary. Free names that are not known by the adversary must be declared private:
A naïve handshake protocol between client A and server B is illustrated below. It is assumed that each principal has a public/private key pair, and that the client A knows the server B’s public key $pk(sk_B)$. The aim of the protocol is for the client A to share the secret s with the server B. The protocol proceeds as follows. On request from a client A, server B generates a fresh symmetric key k (session key), pairs it with his identity (public key $pk(sk_B)$), signs it with his secret key sk_B and encrypts it using his client’s public key $pk(sk_A)$. That is, the server sends the message $aenc(sign((pk(sk_B),k),sk_B),pk(sk_A))$. When A receives this message, she decrypts it using her secret key sk_A, verifies the digital signature made by B using his public key $pk(sk_B)$, and extracts the session key k. A uses this key to symmetrically encrypt the secret s. The rationale behind the protocol is that A receives the signature asymmetrically encrypted with her public key and hence she should be the only one able to decrypt its content. Moreover, the digital signature should ensure that B is the originator of the message. The messages sent are illustrated as follows:

$$A \rightarrow B : pk(sk_A)$$
$$B \rightarrow A : aenc(sign((pk(sk_B),k),sk_B),pk(sk_A))$$
$$A \rightarrow B : senc(s,k)$$

Note that protocol narrations (as above) are useful, but lack clarity. For example, they do not specify any checks which should be made by the participants during the execution of the protocol. Such checks include verifying digital signatures and ensuring that encrypted messages are correctly formed. Failure of these checks typically results in the participant aborting the protocol. These details will be explicitly stated when protocols are encoded for ProVerif. (For further discussion on protocol specification, see [AN96, Aba00].)

Informally, the three properties we would like this protocol to provide are:

1. Secrecy: the value s is known only to A and B.

2. Authentication of A to B: if B reaches the end of the protocol and he believes he has shared the key k with A, then A was indeed his interlocutor and she has shared k.

3. Authentication of B to A: if A reaches the end of the protocol with shared key k, then B proposed k for use by A.

However, the protocol is vulnerable to a man-in-the-middle attack (illustrated below). If a dishonest participant I starts a session with B, then I is able to impersonate B in a subsequent session the client A starts with B. At the end of the protocol, A believes that she shares the secret s with B, while she actually shares s with I.

$$I \rightarrow B : pk(sk_I)$$
$$B \rightarrow I : aenc(sign((pk(sk_B),k),sk_B),pk(sk_I))$$
$$A \rightarrow B : pk(sk_A)$$
$$I \rightarrow A : aenc(sign((pk(sk_B),k),sk_B),pk(sk_A))$$
$$A \rightarrow B : senc(s,k)$$

The protocol can easily be corrected by adding the identity of the intended client:

$$A \rightarrow B : pk(sk_A)$$
$$B \rightarrow A : aenc(sign((pk(sk_A),pk(sk_B),k),sk_B),pk(sk_A))$$
$$A \rightarrow B : senc(s,k)$$

With this correction, I is not able to re-use the signed key from B in her session with A.
free \(n : t \) [private].

Constructors (function symbols) are used to build terms modeling primitives used by cryptographic protocols; for example: one-way hash functions, encryptions, and digital signatures. Constructors are defined by

fun \(f(t_1, \ldots, t_n) : t \).

where \(f \) is a constructor of arity \(n \), \(t \) is its return type, and \(t_1, \ldots, t_n \) are the types of its arguments. Constructors are available to the attacker unless they are declared private:

fun \(f(t_1, \ldots, t_n) : t \) [private].

Private constructors can be useful for modeling tables of keys stored by the server (see Section 6.3.2), for example.

The relationships between cryptographic primitives are captured by destructors which are used to manipulate terms formed by constructors. Destructors are modeled using rewrite rules of the form:

\[
\text{reduc for all } x_1 : t_{1,1}, \ldots, x_1 : t_{1,n_1}; g(M_{1,1}, \ldots, M_{1,k}) = M_{1,0};
\]

\[
\ldots
\text{for all } x_m : t_{m,1}, \ldots, x_m : t_{m,n_m}; g(M_{m,1}, \ldots, M_{m,k}) = M_{m,0}.
\]

where \(g \) is a destructor of arity \(k \). The terms \(M_{1,1}, \ldots, M_{1,k}, M_{1,0} \) are built from the application of constructors to variables \(x_1, x_1, \ldots, x_1 \) of types \(t_{1,1}, \ldots, t_{1,n_1} \) respectively (and similarly for the other rewrite rules). The return type of \(g \) is the type \(M_{1,0} \) and \(M_{1,0}, \ldots, M_{m,0} \) must have the same type. We similarly require that the arguments of the destructor have the same type; that is, \(M_{i,1}, \ldots, M_{i,k} \) have the same types as \(M_{i,1}, \ldots, M_{i,k} \) for \(i \in [2, m] \), and these types are the types of the arguments of \(g \). When the term \(g(M_{1,1}, \ldots, M_{1,k}) \) (or an instance of that term) is encountered during execution, it is replaced by \(M_{1,0} \), and similarly for the other rewrite rules. When no rule can be applied, the destructor fails, and the process blocks (except for the let process, see Section 3.1.4). This behavior corresponds to real world application of cryptographic primitives which include sufficient redundancy to detect scenarios in which an operation fails. For example, in practice, encrypted messages may be assumed to come with sufficient redundancy to discover when the ‘wrong’ key is used for decryption. It follows that destructors capture the behavior of cryptographic primitives which can visibly fail. Destructors must be deterministic, that is, for each terms \((M_1, \ldots, M_k) \) given as argument to \(g \), when several rewrite rules apply, they must all yield the same result and, in the rewrite rules, the variables that occur in \(M_{1,0} \) must also occur in \(M_{i,1}, \ldots, M_{i,k} \), so that the result of \(g(M_1, \ldots, M_k) \) is entirely determined. In a similar manner to constructors, destructors may be declared private by appending [private]. The generic mechanism by which primitives are encoded permits the modeling of various cryptographic operators.

3.1.2 Example: Declaring cryptographic primitives for the handshake protocol

We now formalize the basic cryptographic primitives used by the handshake protocol.

Symmetric encryption. For symmetric encryption, we define the type key and consider the binary constructor senc which takes arguments of type bitstring, key and returns a bitstring.

1 type key.

2 fun senc (bitstring , key): bitstring.

Note that the type bitstring is built-in, and hence, need not be declared as a user-defined type. The type key is not built-in and hence we declare it on Line 1. To model the decryption operation, we introduce the destructor:

4 reduc forall m: bitstring , k: key; sdec (senc (m,k),k) = m.

where \(m \) represents the message and \(k \) represents the symmetric key.
Asymmetric encryption. For asymmetric cryptography, we consider the unary constructor \(\textit{pk} \), which takes an argument of type \(\textit{skey} \) (private key) and returns a \(\textit{pkey} \) (public key), to capture the notion of constructing a key pair. Decryption is captured in a similar manner to symmetric cryptography with a public/private key pair used in place of a symmetric key.

\[
\begin{align*}
\textit{type} & \quad \textit{skey} . \\
\textit{type} & \quad \textit{pkey} . \\
\textit{fun} & \quad \textit{pk} (\textit{skey}) : \textit{pkey} . \\
\textit{fun} & \quad \textit{aenc} (\textit{bitstring}, \textit{pkey}) : \textit{bitstring} . \\
\text{reduce} & \quad \text{forall} \; \textit{m: bitstring} , \; \textit{k: skey}; \; \textit{adec} (\textit{aenc}(\textit{m}, \textit{pk}(\textit{k})), \textit{k}) = \textit{m} .
\end{align*}
\]

Digital signatures. In a similar manner to asymmetric encryption, digital signatures rely on a pair of signing keys of types \(\textit{sskey} \) (private signing key) and \(\textit{spkey} \) (public signing key). We will consider digital signatures with message recovery:

\[
\begin{align*}
\textit{type} & \quad \textit{sskey} . \\
\textit{type} & \quad \textit{spkey} . \\
\textit{fun} & \quad \textit{spk} (\textit{sskey}) : \textit{spkey} . \\
\textit{fun} & \quad \textit{sign} (\textit{bitstring}, \textit{sskey}) : \textit{bitstring} . \\
\text{reduce} & \quad \text{forall} \; \textit{m: bitstring} , \; \textit{k: sskey}; \; \textit{getmess} (\textit{sign}(\textit{m}, \textit{k})) = \textit{m} . \\
\text{reduce} & \quad \text{forall} \; \textit{m: bitstring} , \; \textit{k: sskey}; \; \textit{checksign} (\textit{sign}(\textit{m}, \textit{k}), \textit{spk}(\textit{k})) = \textit{m} .
\end{align*}
\]

The constructors \(\textit{spk} \), for creating public keys, and \(\textit{sign} \), for constructing signatures, are standard. The destructors permit message recovery and signature verification. The destructor \(\textit{getmess} \) allows the adversary to get the message \(\textit{m} \) from the signature, even without having the key. The destructor \(\textit{checksign} \) checks the signature, and returns \(\textit{m} \) only when the signature is correct. Honest processes typically use only \(\textit{checksign} \). This model of signatures assumes that the signature is always accompanied with the message \(\textit{m} \). It is also possible to model signatures that do not reveal the message \(\textit{m} \), see Section 4.2.5.

Tuples and typing. For convenience, ProVerif has built-in support for tupling. A tuple of length \(n > 1 \) is defined as \((M_1, \ldots, M_n) \) where \(M_1, \ldots, M_n \) are terms of any type. Once in possession of a tuple, the adversary has the ability to recover the \(i \)th element. The inverse is also true: if the adversary is in possession of terms \(M_1, \ldots, M_n \), then it can construct the tuple \((M_1, \ldots, M_n) \). Tuples are always of type \(\textit{bitstring} \). Accordingly, constructors that take arguments of type \(\textit{bitstring} \) may be applied to tuples. Note that the term \((M) \) is not a tuple and is equivalent to \(M \). (Parentheses are needed to override the default precedence of infix operators.) It follows that \((M) \) and \(M \) have the same type and that tuples of arity one do not exist.

3.1.3 Process macros

To facilitate development, protocols need not be encoded into a single main process (as we did in Section 2). Instead, \textit{sub-processes} may be specified in the declarations using macros of the form

\[
\textit{let} \; R(x_1 : t_1, \ldots, x_n : t_n) = P .
\]

where \(R \) is the macro name, \(P \) is the sub-process being defined, and \(x_1, \ldots, x_n \), of types \(t_1, \ldots, t_n \) respectively, are the free variables of \(P \). The macro expansion \(R(M_1, \ldots, M_n) \) will then expand to \(P \) with \(M_1 \) substituted for \(x_1, \ldots, M_n \) substituted for \(x_n \). As an example, consider a variant docs/hello.var.pv of docs/hello.pv (previously presented in Chapter 2):

\[
\begin{align*}
\text{free} \; c : \textit{channel} . \\
\text{free} \; \textit{Cocks} : \textit{bitstring} \; [\text{\textit{private}}] . \\
\text{free} \; \textit{RSA} : \textit{bitstring} \; [\text{\textit{private}}] .
\end{align*}
\]
query attacker (Cocks).

let R(x: bitstring) = out(c,x); 0.

let R'(y: bitstring) = 0.

process R(RSA) | R'(Cocks)

By inspection of ProVerif’s output (see Section 3.3 for details on ProVerif’s output), one can observe that this process is identical to the one in which the macro definitions are omitted and are instead expanded upon in the main process. It follows immediately that macros are only an encoding which we find particularly useful for development.

3.1.4 Processes

The basic grammar of the language is presented in Figure 3.2; advanced features will be discussed in Chapter 4; and the complete grammar is presented in Appendix A for reference.

Terms \(M, N \) consist of names \(a, b, c, k, m, n, s \); variables \(x, y, z \); tuples \((M_1, \ldots, M_j) \) where \(j \) is the arity of the tuple; and constructor/destructor application, denoted \(h(M_1, \ldots, M_k) \) where \(k \) is the arity of \(h \) and arguments \(M_1, \ldots, M_k \) have the required types. Some functions use the infix notation: \(M = N \) for equality, \(M <> N \) for inequality (both equality and inequality work modulo an equational theory; they take two arguments of the same type and return a result of type bool), \(M && M \) for the boolean conjunction, \(M || M \) for the boolean disjunction. We use not\((M)\) for the boolean negation. In boolean operations, all values different from true (modulo an equational theory) are considered as false. Furthermore, if the first argument of \(M && M \) is not true, then the second argument is not evaluated and the result is false. Similarly, if the first argument of \(M || M \) is true, then the second argument is not evaluated and the result is true.

Processes \(P, Q \) are defined as follows. The null process \(0 \) does nothing: \(P \mid Q \) is the parallel composition of processes \(P \) and \(Q \), used to represent participants of a protocol running in parallel; and the replication \(!P \) is the infinite composition \(P \mid P \mid \ldots \), which is often used to capture an unbounded number of sessions. Name restriction \(\text{new} n : t ; P \) binds name \(n \) of type \(t \) inside \(P \), the introduction of restricted names (or private names) is useful to capture both fresh random numbers (modeling nonces and keys, for example) and private channels. Communication is captured by message input and message output. The process \(\text{in}(M, x : t) ; P \) awaits a message of type \(t \) from channel \(M \) and then behaves as \(P \) with the received message bound to the variable \(x \); that is, every free occurrence of \(x \) in \(P \) refers to the message received. The process \(\text{out}(M, N) ; P \) is ready to send \(N \) on channel \(M \) and then run \(P \). In both of these cases, we may omit \(P \) when it is \(0 \). The conditional \(\text{if} \ M \text{ then } P \text{ else } Q \) is standard: it runs \(P \) when the boolean term \(M \) evaluates to true, it runs \(Q \) when \(M \) evaluates to some other value. It executes nothing when the term \(M \) fails (for instance, when \(M \) contains a destructor for which no rewrite rule applies). For example, \(\text{if} \ M = N \text{ then } P \text{ else } Q \) tests equality of \(M \) and \(N \). For convenience, conditionals may be abbreviated as \(\text{if} \ M \text{ then } P \) when \(Q \) is the null process. The power of destructors can be capitalized upon by \(\text{let} \ x = M \text{ in } P \text{ else } Q \) statements where \(M \) may contain destructors. When this statement is encountered during process execution, there are two possible outcomes. If the term \(M \) does not fail (that is, for all destructors in \(M \), matching rewrite rules exist), then \(x \) is bound to \(M \) and the \(P \) branch is taken; otherwise (rather than blocking), the \(Q \) branch is taken. (In particular, when \(M \) never fails, the \(P \) branch will always be executed with \(x \) bound to \(M \).) For convenience, the statement \(\text{let} \ x = M \text{ in } P \text{ else } Q \) may be abbreviated as \(\text{let} \ x = M \text{ in } P \) when \(Q \) is the null process. Finally, we have \(R(M_1, \ldots, M_n) \), denoting the use of the macro \(R \) with terms \(M_1, \ldots, M_n \) as arguments.

Pattern matching.

For convenience, ProVerif supports pattern matching and we extend the grammar to include patterns (Figure 3.3). The variable pattern \(x : t \) matches any term of type \(t \) and binds the matched term to \(x \). The variable pattern \(x \) is similar, but can be used only when the type of \(x \) can be inferred from the context. The tuple pattern \((T_1, \ldots, T_n) \) matches tuples \((M_1, \ldots, M_n) \) where each component \(M_i \) \((i \in \{1, \ldots, n\}) \)
Figure 3.2 Term and process grammar

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>M, N</td>
<td>terms</td>
</tr>
<tr>
<td>a, b, c, k, m, n, s</td>
<td>names</td>
</tr>
<tr>
<td>x, y, z</td>
<td>variables</td>
</tr>
<tr>
<td>(M_1, \ldots, M_k)</td>
<td>tuple</td>
</tr>
<tr>
<td>$h(M_1, \ldots, M_k)$</td>
<td>constructor/destructor application</td>
</tr>
<tr>
<td>$M = N$</td>
<td>term equality</td>
</tr>
<tr>
<td>$M <> N$</td>
<td>term inequality</td>
</tr>
<tr>
<td>$M && M$</td>
<td>conjunction</td>
</tr>
<tr>
<td>$M</td>
<td></td>
</tr>
<tr>
<td>$\text{not}(M)$</td>
<td>negation</td>
</tr>
</tbody>
</table>

Figure 3.3 Pattern matching grammar

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>patterns</td>
</tr>
<tr>
<td>$x : t$</td>
<td>typed variable</td>
</tr>
<tr>
<td>x</td>
<td>variable without explicit type</td>
</tr>
<tr>
<td>(T_1, \ldots, T_n)</td>
<td>tuple</td>
</tr>
<tr>
<td>$=M$</td>
<td>equality test</td>
</tr>
</tbody>
</table>
is recursively matched with T_t. Finally, the pattern $=M$ matches terms N where $M = N$. (This is equivalent to an equality test.)

To make use of patterns, the grammar for processes is modified. We omit the rule $\text{in}(M,x:t); P$ and instead consider $\text{in}(M,T); P$ which awaits a message matching the pattern T and then behaves as P with the free variables of T bound in P. Similarly, we replace $\text{let} \ x = M \ \text{in} \ P \ \text{else} \ Q$ with the more general $\text{let} \ T = M \ \text{in} \ P \ \text{else} \ Q$. (Note that $\text{let} \ x = M \ \text{in} \ P \ \text{else} \ Q$ is a particular case in which the type of x is inferred from M; users may also write $\text{let} \ x : t = M \ \text{in} \ P \ \text{else} \ Q$ where t is the type of M, ProVerif will produce an error if there is a type mismatch.)

Scope and binding.

Bracketing must be used to avoid ambiguities in the way processes are written down. For example, the process $!P \mid Q$ might be interpreted as $!(P \mid Q)$, or as $(!P) \mid Q$. These processes are different. To avoid too much bracketing, we adopt conventions about the precedence of process operators. The binary parallel process $P \mid Q$ binds most closely; followed by the binary processes $\text{if} \ M \ \text{then} \ P \ \text{else} \ Q$, $\text{let} \ x = M \ \text{in} \ P \ \text{else} \ Q$; finally, unary processes bind least closely. It follows that $!(P \mid Q)$. Users should pay particular attention to ProVerif warning messages since these typically arise from misunderstanding ProVerif’s binding conventions. For example, consider the process

$$\text{new} \ n : t; \ \text{out}(c,n) \ | \ \text{new} \ n : t; \ \text{in}(c,x:t); 0 \ | \ \text{if} \ x = n \ \text{then} \ 0 \ | \ \text{out}(c,n)$$

which produces the message “Warning: identifier n rebound.” Moreover, the process will never perform the final (c,n) because the process is bracketed as follows:

$$\text{new} \ n : t; (\text{out}(c,n)) \ | \ \text{new} \ n : t; (\text{in}(c,x:t); 0 \ | \ \text{if} \ x = n \ \text{then} \ (0 \ | \ \text{out}(c,n))))$$

and hence the final output is guarded by a conditional which can never be satisfied. The authors recommend the distinct naming of names and variables to avoid confusion. New users may like to refer to the output produced by ProVerif to ensure that they have defined processes correctly (see also Section 3.3). Another possible ambiguity arises because of the convention of omitting else 0 in the if-then-else construct (and similarly for let-in-else): it is not clear which if the else applies to in the expression:

$$\text{if} \ M = M' \ \text{then} \ \text{if} \ N = N' \ \text{then} \ P \ \text{else} \ Q$$

In this instance, we adopt the convention that the else branch belongs to the closest if and hence the statement should be interpreted as $\text{if} \ M = M' \ \text{then} \ (\text{if} \ N = N' \ \text{then} \ P \ \text{else} \ Q)$. The convention is similar for let-in-else.

Remarks about syntax

The restrictions on identifiers (Figure 3.2) for constructors/destructors h, names a,b,c,k,m,n,s, types t, and variables x,y,z are completely relaxed. Formally, we do not distinguish between identifiers and let identifiers range over an unlimited sequence of characters (a-z, A-Z), digits (0-9), underscores (_), single-quotes (’), and accented letters from the ISO Latin 1 character set where the first character of the identifier is a letter and the identifier is distinct from the reserved words. Note that identifiers are case sensitive. Comments can be included in input files and are surrounded by (• and •). Nested comments are not supported.

Reserved words. The following is a list of keywords in the ProVerif language; accordingly, they cannot be used as identifiers.

among, channel, choice, clauses, const, def, elimtrue, else, equation, equivalence, event, expand, fail, forall, free, fun, get, if, in, inj-event, insert, let, letfun, new, noninterf, not, nounif, or, otherwise, out, param, phase, pred, proba, process, proof, putbegin, query, reduc, set, suchthat, table, then, type, weaksecret, yield.

ProVerif also has built-in types bitstring, bool and constants true, false of type bool; although these identifiers can be reused as identifiers, the authors strongly discourage this practice.
3.1.5 Example: handshake protocol

We are now ready to present an encoding of the handshake protocol, available in docs/ex_handshake.pv (for brevity, we omit function/type declarations and destructors, for details see Section 3.1.1):

```proverif
free c: channel.
free s: bitstring [private].
query attacker(s).

let clientA(pkA: pkey, skA: skey, pkB: spkey) =
  out(c, pkA);
in(c, x: bitstring);
let y = adec(x, skA) in
let (=pkB, k: key) = checksign(y, pkB) in
out(c, senc(s, k)).

let serverB(pkB: spkey, skB: sskey) =
in(c, pkX: pkey);
new k: key;
out(c, aenc(sign((pkB, k), skB), pkX));
in(c, x: bitstring);
let z = sdec(x, k) in
0.

process
new skA: skey;
new skB: sskey;
let pkA = pk(skA) in out(c, pkA);
let pkB = spk(skB) in out(c, pkB);
( (!clientA(pkA, skA, pkB)) | (!serverB(pkB, skB)) )
```

The first line declares the public channel \(c \). Lines 3-4 should be familiar from Section 2 and further details will be given in Section 3.2. The client process is defined by the macro starting on Line 6 and the server process is defined by the macro starting on Line 13. The main process generates the private asymmetric key \(skA \) and the private signing key \(skB \) for principals \(A \), \(B \) respectively (Lines 22-23). The public key parts \(pk(skA), spk(skB) \) are derived and then output on the public communications channel \(c \) (Lines 24-25), ensuring that they are available to the adversary. (Observe that this is done using handles \(pkA, pkB \) for convenience.) The main process also instantiates multiple copies of the client and server macros with the relevant parameters representing multiple sessions of the roles.

We assume that the server \(B \) is willing to run the protocol with any other principal; the choice of her interlocutor will be made by the environment. This is captured by modeling the first input \(\text{in}(c, pkX: pkey) \) to serverB as his client’s public key \(pkX \) (Line 14). The client \(A \) on the other hand only wishes to share his secret \(s \) with the server \(B \); accordingly, \(B \)’s public key is hard-coded into the process clientA. We additionally assume that each principal is willing to engage in an unbounded number of sessions and hence clientA(pkA, skA, pkB) and serverB(pkB, skB) are under replication.

The client and server processes correspond exactly to the description presented in Figure 3.1 and we will now describe the details of our encoding. On request from a client, server \(B \) starts the protocol by selecting a fresh key \(k \) and outputting \(\text{aenc}(\text{sign}((pkB, k), skB), pkX) \) (Line 16); that is, her signature on the key \(k \) paired with her identity \(spk(skB) \) and encrypted for his client using her public key \(pkX \). Meanwhile, the client \(A \) awaits the input of his interlocutor’s signature on the pair \((pkB, k)\) encrypted using his public key (Line 8). \(A \) verifies that the ciphertext is correctly formed using the destructor adec on Line 9, which will visibly fail if \(x \) is not a message asymmetrically encrypted for the client; that is, the (omitted) else branch of the statement will be evaluated because there is no corresponding rewrite rule. The statement \(\text{let } (=pkB, k: key) = \text{checksign}(y, pkB) \text{ in } \) on Line 10 uses destructors and pattern matching with type checking to verify that \(y \) is a signature under \(skB \) containing a pair, where the first element is the server’s public signing key and the second is a symmetric key \(k \). If \(y \) is not a
2. SECURITY PROPERTIES

The ProVerif tool is able to prove reachability properties, correspondence assertions, and observational equivalence. In this section, we will demonstrate how to prove the security properties of the handshake protocol. A more complete coverage of the properties that ProVerif can prove is presented in Section 4.3.

2.1 Reachability and secrecy

Proving reachability properties is ProVerif’s most basic capability. The tool allows the investigation of which terms are available to an attacker; and hence (syntactic) secrecy of terms can be evaluated with respect to a model. To test secrecy of the term M in the model, the following query is included in the input file before the main process:

\[\text{query attacker}(M). \]

where M is a ground term, without destructors, containing free names (possibly private and hence not initially known to the attacker). We have already demonstrated the use of secrecy queries on our handshake protocol (see the code in Section 3.1.5).

2.2 Correspondence assertions, events, and authentication

Correspondence assertions [WL93] are used to capture relationships between events which can be expressed in the form “if an event e has been executed, then event e' has been previously executed.” Moreover, these events may contain arguments, which allow relationships between the arguments of events to be studied. To reason with correspondence assertions, we annotate processes with events, which mark important stages reached by the protocol but do not otherwise affect behavior. Accordingly, we extend the grammar for processes to include events denoted

\[\text{event } e(M_1, \ldots, M_n); P \]

Importantly, the adversary’s knowledge is not extended by the terms M_1, \ldots, M_n following the execution of event $e(M_1, \ldots, M_n)$; hence, the execution of the process Q after inserting events is the execution of Q without events from the perspective of the adversary. All events must be declared (in the list of declarations in the input file) in the form $\text{event } e(t_1, \ldots, t_n)$, where t_1, \ldots, t_n are the types of the event arguments. Relationships between events may now be specified as correspondence assertions.

Correspondence

The syntax to query a basic correspondence assertion is:

\[\text{query } x_1 : t_1, \ldots, x_n : t_n; \text{ event } (e(M_1, \ldots, M_j)) \implies \text{ event } (e'(N_1, \ldots, N_k)). \]

where $M_1, \ldots, M_j, N_1, \ldots, N_k$ are terms built by the application of constructors to the variables x_1, \ldots, x_n of types t_1, \ldots, t_n and e, e' are declared as events. The query is satisfied if, for each occurrence of the event $e(M_1, \ldots, M_j)$, there is a previous execution of $e'(N_1, \ldots, N_k)$. Moreover, the parameterization of the events must satisfy any relationships defined by $M_1, \ldots, M_j, N_1, \ldots, N_k$: that is, the variables x_1, \ldots, x_n have the same value in M_1, \ldots, M_j and in N_1, \ldots, N_k.

In such a query, the variables that occur before the arrow \implies (that is, in M_1, \ldots, M_j) are universally quantified, while the variables that occur after the arrow \implies (in N_1, \ldots, N_k) but not before are existentially quantified. For instance,

\[\text{query } x : t_1, y : t_2, z : t_3; \text{ event } (e(x, y)) \implies \text{ event } (e'(y, z)). \]

means that, for all x, y, for each occurrence of $e(x, y)$, there is a previous occurrence of $e'(y, z)$ for some z.

Correct signature, then the (omitted) else branch of the statement will be evaluated because there is no corresponding rewrite rule, so the client halts. Finally, the server inputs a bitstring x and recovers the cleartext as variable z. (Observe that the failure of decryption is again detectable.) Note that the variable z in the server process is not used.
Injective correspondence

The definition of correspondence we have just discussed is insufficient to capture authentication in cases where a one-to-one relationship between the number of protocol runs performed by each participant is desired. Consider, for example, a financial transaction in which the server requests payment from the client; the server should complete the transaction only once for each transaction started by the client. (If this were not the case, the client could be charged for several transactions, even if the client only started one.) The situation is similar for access control and other scenarios. Injective correspondence assertions capture the one-to-one relationship and are denoted:

\[
\text{query } x_1 : t_1, \ldots, x_n : t_n; \text{ inj-event } (e(M_1, \ldots, M_j)) \implies \text{ inj-event } (e'(N_1, \ldots, N_k)).
\]

Informally, this correspondence asserts that, for each occurrence of the event \(e(M_1, \ldots, M_j) \), there is a distinct earlier occurrence of the event \(e'(N_1, \ldots, N_k) \). It follows immediately that the number of occurrences of \(e'(N_1, \ldots, N_k) \) is greater than, or equal to, the number of occurrences of \(e(M_1, \ldots, M_j) \). Note that using \text{ inj-event } or \text{ event } before the arrow == does not change the meaning of the query. It is only important after the arrow.

3.2.3 Example: Secrecy and authentication in the handshake protocol

Authentication can be captured using correspondence assertions (additional applications of correspondence assertions were discussed in §1.1). Recall that in addition to the secrecy property mentioned for the handshake protocol in Figure 3.1, there were also authentication properties. The protocol is intended to ensure that, if client \(A \) thinks she executes the protocol with server \(B \), then she really does so, and vice versa. When we say ‘she thinks’ that she executes it with \(B \), we mean that the data she receives indicates that fact. Accordingly, we declare the events:

- \text{ event } acceptsClient(key), which is used by the client to record the belief that she has accepted to run the protocol with the server \(B \) and the supplied symmetric key.
- \text{ event } acceptsServer(key,pkey), which is used to record the fact that the server considers he has accepted to run the protocol with a client, with the proposed key supplied as the first argument and the client’s public key as the second.
- \text{ event } termClient(key,pkey), which means the client believes she has terminated a protocol run using the symmetric key supplied as the first argument and the client’s public key as the second.
- \text{ event } termServer(key), which denotes the server’s belief that he has terminated a protocol run with the client \(A \) with the symmetric key supplied as the first argument.

Recall that the client is only willing to share her secret with the server \(B \); it follows that, if she completes the protocol, then she believes she has done so with \(B \) and hence authentication of \(B \) to \(A \) should hold. In contrast, server \(B \) is willing to run the protocol with any client (that is, he is willing to learn secrets from many clients), and hence at the end of the protocol he only expects authentication of \(A \) to \(B \) to hold, if he believes \(A \) was indeed his interlocutor (so \text{ termServer}(x) \) is executed only when \(pkX = pkA \). We can now formalize the two authentication properties (given in Figure 3.1) for the handshake protocol. They are, respectively:

\[
\text{query } x : \text{key}, y : \text{spkey}; \text{ event } (\text{termClient}(x,y)) == \text{ event } (\text{acceptsServer}(x,y)).
\]

\[
\text{query } x : \text{key}; \text{ inj-event } (\text{termServer}(x)) == \text{ inj-event } (\text{acceptsClient}(x)).
\]

The subtle difference between the two correspondence assertions is due to the differing authentication properties expected by participants \(A \) and \(B \). The first correspondence is not injective because the protocol does not allow the client to learn whether the messages she received are fresh: the message from the server to the client may be replayed, leading to several client sessions for a single server session. The revised ProVerif encoding with annotations and correspondence assertions is presented below and in the file docs/ex_handshake_annotated.pv (cryptographic declarations have been omitted for brevity):

```plaintext
1 free c : channel.
2
```
free s: bitstring [private].
query attacker(s).

event acceptsClient(key).
event acceptsServer(key,pkey).
event termClient(key,pkey).
event termServer(key).

query x:key,y:pkey; event(termClient(x,y))===>event(acceptsServer(x,y)).
query x:key; inj-event(termServer(x)===>inj-event(acceptsClient(x)).

let clientA(pkA:pkey,skA:skey,pkB:spkey) =
out(c,pkA);
in(c,x:bitstring);
let y = adec(x,skA) in
let (=pkB,k:key) = checksign(y,pkB) in
event acceptsClient(k);
out(c,senc(s,k));
ever termClient(k,pkA).

let serverB(pkB:spkey,skB:sskey,pkA:pkey) =
in(c,pkX:pkey);
new k:key;
event acceptsServer(k,pkX);
out(c,aenc(sign((pkB,k),skB),pkX));
in(c,x:bitstring);
let z = sdec(x,k) in
if pkX = pkA then event termServer(k).

process
new skA:skey;
new skB:sskey;
let pkA = pk(skA) in out(c,pkA);
let pkB = spk(skB) in out(c,pkB);
((!clientA(pkA,skA,pkB)) | (!serverB(pkB,skB,pkA)))

Figure 3.4 Messages and events for authentication

<table>
<thead>
<tr>
<th>Client</th>
<th>Server</th>
</tr>
</thead>
<tbody>
<tr>
<td>event termClient</td>
<td>event acceptsServer</td>
</tr>
<tr>
<td>message n - 1</td>
<td></td>
</tr>
<tr>
<td>event acceptsClient</td>
<td>message n</td>
</tr>
<tr>
<td>event termServer</td>
<td></td>
</tr>
</tbody>
</table>

There is generally some flexibility in the placement of events in a process, but not all choices are correct. For example, in order to prove authentication in our handshake protocol, we consider the property

query x:key; inj-event(termServer(x)===>inj-event(acceptsClient(x)).

and the event termServer is placed when the server terminates (typically at the end of the protocol), while acceptsClient is placed when the client accepts (typically before the client sends its last message). Therefore, when the last message, message n, is from the client to the server, the placement of events follows Figure 3.4: the last message sent by the client is message n, so acceptsClient is placed before the client sends message n, and termServer is placed after the server receives message n. The last message sent by the server is message n - 1, so acceptsServer is placed before the server sends message n - 1, and...
termClient is placed after the client receives message \(n - 1 \) (any position after that reception is fine). More generally, the event that occurs before the arrow \(\Rightarrow \) can be placed at the end of the protocol, but the event that occurs after the arrow \(\Rightarrow \) must be followed by at least one message output. Otherwise, the whole protocol can be executed without executing the latter event, so the correspondence certainly does not hold.

One can also note that moving an event that occurs before the arrow \(\Rightarrow \) towards the beginning of the protocol strengthens the correspondence property, and moving an event that occurs after the arrow \(\Rightarrow \) towards the end of the protocol also strengthens the correspondence property. Adding arguments to the events strengthens the correspondence property as well.

3.3 Understanding ProVerif output

The output produced by ProVerif is rather verbatim and can be overwhelming for new users. In essence the output is in the following format:

```
[Equations]
Process:
  [Process]

— Query [Query]
Completing...
Starting query [Query]
goal [un]reachable: [Goal]
Abbreviations:
...

[Attack derivation]
```

A more detailed output of the traces is available with

```
set traceDisplay = long.
```

```
[Attack trace]
RESULT [Query] [result].
```

where [Equations] summarizes the internal representation of the equations given in the input file (if any) and [Process] presents the input process with all macros expanded and distinct identifiers assigned to unique names/variables; in addition, parts of the process are annotated with identifiers \(\{ n \} \) where \(n \in \mathbb{N}^* \).

(New users may like to refer to this interpreted process to ensure they have defined the scope of variables in the correct manner and to ensure they haven’t inadvertently bound processes inside if-then-else/let-in-else statements.) ProVerif then begins to evaluate the [Query] provided by the user. Internally, ProVerif attempts to prove that a state in which a property is violated is unreachable; it follows that ProVerif shows the (un)reachability of some [Goal]. If a property is violated then ProVerif attempts to reconstruct an [Attack derivation] in English and an [Attack trace] in the applied pi calculus. Finally, ProVerif reports whether the query was satisfied. For convenience, Linux and cygwin users may make use of the following command:

```
./proverif script.pv | grep "RES"
```

which reduces the output to the results of the queries.

3.3.1 Results

In order to understand the results correctly, it is important to understand the difference between the attack derivation and the attack trace. The attack derivation is an explanation of the actions that the attacker has to make in order to break the security property, in the internal representation of ProVerif.
Because this internal representation uses abstractions, the derivation is not always executable in reality; for instance, it may require the repetition of certain actions that can in fact never be repeated, for instance because they are not under a replication. In contrast, the attack trace refers to the semantics of the applied pi calculus, and always corresponds to an executable trace of the considered process.

ProVerif can display three kinds of results:

- **RESULT [Query] is true:** The query is proved, there is no attack. In this case, ProVerif displays no attack derivation and no attack trace.

- **RESULT [Query] is false:** The query is false, ProVerif has discovered an attack against the desired security property. The attack trace is displayed just before the result (and an attack derivation is also displayed, but you should focus on the attack trace since it represents the real attack).

- **RESULT [Query] cannot be proved:** This is a “don’t know” answer. ProVerif could not prove that the query is true and also could not find an attack that proves that the query is false. Since the problem of verifying protocols for an unbounded number of sessions is undecidable, this situation is unavoidable. Still, ProVerif gives some additional information that can be useful in order to determine whether the query is true. In particular, ProVerif displays an attack derivation. By manually inspecting the derivation, it is sometimes possible to reconstruct an attack. For observational equivalence properties, it may also display an attack trace, even if this trace does not prove that the observational equivalence does not hold. We will come back to this point when we deal with observational equivalence, in Section 4.3.2. Sources of incompleteness, which explain why ProVerif sometimes fails to prove properties that hold, will be discussed in Section 6.3.4.

Interpreting results. Understanding the internal manner in which ProVerif operates is useful to interpret the results output. Recall that ProVerif attempts to prove that a state in which a property is violated is unreachable. It follows that when ProVerif is supplied with query attacker(M), that internally ProVerif attempts to show not attacker(M) and hence RESULT not attacker(M) is true. means that the secrecy of M is preserved by the protocol.

Error and warning messages. In case of a syntax error, ProVerif indicates the character position of the error (line and column numbers). Please use your text editor to find the position of the error. (The error messages can be interpreted by emacs.) In addition, ProVerif may provide various warning messages. The earlier grep command can be modified into ./proverif script.pv | egrep "RES|Err|War" for more manageable output with notification of error/warnings, although a more complex command is required to read any associated messages. In this case, the command ./proverif script.pv | less can be useful.

3.3.2 Example: ProVerif output for the handshake protocol

Executing the handshake protocol with ./proverif docs/ex_handshake.annotated.pv | grep "RES" produces the following output:

```
RESULT inj-event(termServer(x.11)) \implies
\quad inj-event(acceptsClient(x.11)) \text{ is true.}
RESULT event(termClient(x.168, y.169)) \implies
\quad event(acceptsServer(x.168, y.169)) \text{ is false.}
RESULT not attacker(s[]) \text{ is false.}
```

which informs us that authentication of A to B holds, but authentication of B to A and secrecy of s do not hold.

Analyzing attack traces.

By inspecting the output more closely, we can reconstruct the attack. For example, let us consider the query query attacker(s) which produces the following:
Process:
{1} new skA : skey;
{2} new skB : sskey;
{3} let pkA : pkey = pk(skA) in
{4} out(c, pkA);
{5} let pkB : spkey = spk(skB) in
{6} out(c, pkB);

({7}!
{8} out(c, pkA);
{9} in(c, x : bitstring);
{10} let y : bitstring = adec(x, skA) in
{11} let (=pkB, k_8 : key) = checksign(y, pkB) in
{12} event acceptsClient(k_8);
{13} out(c, senc(s, k_8));
{14} event termClient(k_8, pkA)
)

{15}!
{16} in(c, pkX : pkey);
{17} new k_9 : key;
{18} event acceptsServer(k_9, pkX);
{19} out(c, aenc(sign((pkB, k_9), skB), pkX));
{20} in(c, x_10 : bitstring);
{21} let z : bitstring = sdec(x_10, k_9) in
{22} if pkX = pkA then
{23} event termServer(k_9)

)...
3.3. UNDERSTANDING PROVERIF OUTPUT

5. By 4, the attacker may know \(\text{sign}((\text{spk}(\text{skB}[[]]) , k_{486}), \text{skB}[[]]) \).
6. Using the function \(\text{getmess} \), the attacker may obtain \(\text{sign}((\text{spk}(\text{skB}[[]]) , k_{486})) \).
7. The message \(\text{pk}(\text{skA}[[]]) \) may be sent to the attacker at output \{4\}.
8. By 4, the attacker may know \(\text{sign}((\text{spk}(\text{skB}[[]]) , k_{486}), \text{skB}[[]]) \).
9. Using the function \(\text{aenc} \), the attacker may obtain \(\text{aenc}((\text{sign}((\text{spk}(\text{skB}[[]]) , k_{486}), \text{skB}[[]]) , \text{pk}(\text{skA}[[]]))) \).
10. The message \(\text{aenc}((\text{sign}((\text{spk}(\text{skB}[[]]) , k_{486}), \text{skB}[[]]) , \text{pk}(\text{skA}[[]]))) \) that the attacker may have by 8 may be received at input \{9\}.
11. By 6, the attacker may know \(k_{486} \).
12. Using the function \(\text{sdec} \), the attacker may obtain \(s[[]] \).

A more detailed output of the traces is available with

\[\text{set traceDisplay = long}. \]

\text{new skA creating skA_490 at \{1\}}
\text{new skB creating skB_491 at \{2\}}
\text{out}(c, \text{pk}(\text{skA_490})) at \{4\}
\text{out}(c, \text{spk}(\text{skB_491})) at \{6\}
\text{out}(c, \text{pk}(\text{skA_490})) at \{8\} in copy a_489
\text{in}(c, \text{pk}(a_487)) at \{16\} in copy a_488
\text{new k_9 creating k_492 at \{17\} in copy a_488}
\text{event}(\text{acceptsServer}(k_492, \text{pk}(a_487))) at \{18\} in copy a_488
\text{out}(c, \text{aenc}((\text{sign}((\text{spk}_491, k_492), \text{skB_491}), \text{pk}(a_487)))) at \{19\} in copy a_488
\text{in}(c, \text{aenc}((\text{sign}((\text{spk}_491, k_492), \text{skB_491}), \text{pk}(\text{skA_490}))) at \{9\} in copy a_489
\text{event}(\text{acceptsClient}(k_492)) at \{12\} in copy a_489
CHAPTER 3. USING PROVERIF

The attacker has the message s.

A trace has been found.

RESULT \textbf{not attacker(s)} is false.

ProVerif first outputs its internal representation of the process under consideration. Then, it handles each query in turn. The output regarding the query \texttt{query attacker(s)} can be split into three main parts:

- From “Abbreviations” to “A more detailed…”, a description of the derivation that leads to the fact \textit{attacker(s)}.
- After “A more detailed…” until “A trace has been found”, a description of the corresponding attack trace.
- Finally, the “RESULT” line concludes: the property is false, there is an attack in which the adversary gets s.

Let us first explain the derivation. It starts with a list of abbreviations: these abbreviations give names to some subterms, in order to display them more briefly; such abbreviations are used for the internal representation of names (keys, nonces, …), which can sometimes be large terms that represent simple atomic data. Next, the description of the derivation itself starts. It is a numbered list of steps, here from 1 to 10. Each step corresponds to one action of the process or of the adversary. After an English description of the step, ProVerif displays the fact that is derived thanks to this step, here \textit{attacker(M)} for some term \(M \), meaning that the adversary has \(M \).

- In step 1, the adversary chooses any value \(\text{sk}_{479} \) in its knowledge (which it is going to use as its secret key).
- In step 2, the adversary uses the knowledge of \(\text{sk}_{479} \) obtained at step 1 (“By 1”) to compute the corresponding public key \(\text{pk(}\text{sk}_{479}\text{)} \) using function \(\text{pk} \).
- Step 3 is a step of the process. Input \{16\} (the numbers between braces refer to program points also written between braces in the description of the process, so input \{16\} is the input of Line 19) receives the message \(\text{pk(}\text{sk}_{479}\text{)} \) from the adversary, and output \{19\} (the one at Line 22) replies with \(\text{aenc(}\text{sign(}\text{spk(}\text{sk}_{B}',\text{k}_{\text{486}}\text{)},\text{sk}_{B}'),\text{pk(}\text{sk}_{479}\text{)}\text{)}\). Note that \(k_{\text{486}} \) is an abbreviation for \(k_{\text{9}}[\text{pkX = pk(}\text{sk}_{479}\text{)},!1 = @\text{sid}_{477}] \), as listed at the beginning of the derivation. It designates the key \(k_{\text{9}} \) generated by the \texttt{new} at Line 20, in session \(@\text{sid}_{477} \) (the number of the copy generated by the replication at Line 18, designated by \(!1 \), that is, the first replication), when the key \(\text{pkX} \) received by the input at Line 19 is \(\text{pk(}\text{sk}_{479}\text{)} \). ProVerif displays \(\text{skB}' \) instead of \(\text{skB} \) when \(\text{skB} \) is a name without argument (that is, a free name or a name chosen under no replication and no input). In other words, the adversary starts a session of the server \(B \) with its own public key and gets the corresponding message \(\text{aenc(}\text{sign(}\text{spk(}\text{sk}_{B}',\text{k}_{\text{486}}\text{)},\text{sk}_{B}'),\text{pk(}\text{sk}_{479}\text{)}\text{)}\).
- Steps 4 to 6 are again applications of functions by the adversary to perform its internal computations: the adversary decrypts the message \(\text{aenc(}\text{sign(}\text{spk(}\text{sk}_{B}',\text{k}_{\text{486}}\text{)},\text{sk}_{B}'),\text{pk(}\text{sk}_{479}\text{)}\text{)}\) received at step 3 and gets the signed message, so it obtains \(\text{sign(}\text{spk(}\text{sk}_{B}',\text{k}_{\text{486}}\text{)},\text{sk}_{B}')\) (step 4) and \(k_{\text{486}} \) (step 6).
- Step 7 uses a step of the process: by the output \{4\} (the one at Line 5), the adversary gets \(\text{pk(}\text{sk}_{A}\text{)} \).
- At step 8, the adversary reencrypts \(\text{sign(}\text{spk(}\text{sk}_{B}',\text{k}_{\text{506}}\text{)},\text{sk}_{B}'),\text{pk(}\text{sk}_{A}\text{)}\) with \(\text{pk(}\text{sk}_{A}\text{)} \).
- Step 9 is again a step of the process: the adversary sends \(\text{aenc(}\text{sign(}\text{spk(}\text{sk}_{B}',\text{k}_{\text{486}}\text{)},\text{sk}_{B}'),\text{pk(}\text{sk}_{A}\text{)}\text{)}\) (obtained at step 8) to input \{9\} (at Line 11) and gets the reply \(\text{senc(s DECLARE}, k_{\text{486}}\text{)} \). In other words, the adversary has obtained a correct message 2 for a session between \(A \) and \(B \). It sends this message to \(A \) who replies with \(\text{senc(s DECLARE}, k_{\text{486}}\text{)} \) as if it was running a session with \(B \).
3.3. UNDERSTANDING PROVERIF OUTPUT

• Finally, in step 10, the adversary decrypts $s_{\text{enc}}(s, k_{486})$ since it has k_{486} (by step 6), so it obtains s_{enc}.

As one can notice, this derivation corresponds exactly to the attack against the protocol outlined in Figure 3.1. The display of the derivation can be tuned by some settings: set abbreviateDerivation = false prevents the use of abbreviations for names and set explainDerivation = false switches to a display of the derivation by explicit references to the Horn clauses used internally by ProVerif instead of relating the derivation to the process. (See also Section 6.2.2 for details on these settings.)

Next, ProVerif reconstructs a trace in the semantics of the pi calculus, corresponding to this derivation. This trace is presented as a sequence of inputs and outputs on public channels and of events. The internal reductions of the process are not displayed for brevity. (As mentioned in the output, it is possible to obtain a more detailed display with the state of the process and the knowledge of the adversary at each step by adding set traceDisplay = long. in your input file.) Each input, output, or event is followed by its location in the process “at {n}”, which refers to the program point between braces in the process displayed at the beginning. When the process is under replication, several copies of the process may be generated. Each of these copies is named (by a name like “a_{n}”), and ProVerif indicates in which copy of the process the input, output, or event is executed. The name itself is unimportant, just the fact that the copy is the same or different is important: the presence of different names of copies for the same replication shows that several sessions are used. Let us explain the trace in the case of the handshake protocol:

• The first two new correspond to the creation of secret keys.

• The first two outputs correspond to the outputs of public keys, at outputs {4} (Line 5) and {6} (Line 7).

• The third output is the output of pkA at output {8} (Line 10), in a session of the client A named a_{489}.

• The next 3 steps correspond to a session of the server B (copy a_{488}) with the adversary: the adversary sends its public key $pk(a_{487})$ at the input {16} (Line 19), the event acceptsServer is executed (Line 21), and the message $a_{\text{enc}}(\text{sign}(\text{spk}(skB_{491}), k_{492}), skB_{491}), pk(a_{487})$ is sent at output {19} (Line 22). These steps correspond to step 3 of the derivation above.

• The last 4 steps correspond to the end of the execution of the session a_{489} of the client A. The message $a_{\text{enc}}(\text{sign}(\text{spk}(skB_{491}), k_{492}), skB_{491}), pk(skA_{490})$ is received at input {9} (Line 11), the event acceptsClient is executed (Line 14), the message $s_{\text{enc}}(s, k_{492})$ is sent at output {13} (Line 15), and finally the event termClient is executed (Line 16). These steps correspond to step 9 of the derivation above.

• Finally, the adversary obtains s_{enc} by decryption of $s_{\text{enc}}(s, k_{492})$.

This trace shows that there is an attack against the secrecy of s, it corresponds to the attack against the protocol outlined in Figure 3.1.

For completeness, we present the complete formalization of the rectified protocol, which ProVerif can successfully verify, below and in the file docs/ex_handshake_annotated_fixed.pv.

1 (* Symmetric key encryption *)
2
3 type key.
4 fun senc(bitstring , key): bitstring .
5 reduc forall m: bitstring , k: key: sdec(senc(m,k),k) = m.
6
7 (* Asymmetric key encryption *)
8
9 type skey .
10
11 type pkey .
12
fun pk(skey): pkey.

fun aenc(bitstring, pkey): bitstring.

reduc forall m: bitstring, sk: skey; adec(aenc(m, pk(sk)), sk) = m.

(* Digital signatures *)

type sskey.
type spkey.

fun spk(sskey): spkey.

fun sign(bitstring, sskey): bitstring.

reduc forall m: bitstring, ssk: sskey; getmess(sign(m, ssk)) = m.

reduc forall m: bitstring, ssk: sskey; checksign(sign(m, ssk), spk(ssk)) = m.

free c: channel.

free s: bitstring [private].

query attacker(s).

event acceptsClient(key).

event acceptsServer(key, pkey).

event termClient(key, pkey).

event termServer(key).

query x:key, y: pkey; event(termClient(x, y))===>event(acceptsServer(x, y)).

query x:key; inj-event(termServer(x)==$>inj-event(acceptsClient(x)).

let clientA(pkA:pkey, skA:skey, pkB:spkey) =
out(c, pkA);
in(c, x: bitstring);
let y = adec(x, skA) in
let (=pkA,=pkB, k: key) = checksign(y, pkB) in
event acceptsClient(k);
out(c, senc(s, k));

event termClient(k, pkA).

let serverB(pkB:spkey, skB:sskey, pkA:pkey) =
in(c, pkX:pkey);
new k: key;

event acceptsServer(k, pkX);
out(c, aenc(sign((pkX, pkB, k), skB), pkX));
in(c, x: bitstring);
let z = sdec(x, k) in
if pkX = pkA then event termServer(k).

process
new skA:skey;
new skB:sskey;
let pkA = pk(skA) in out(c, pkA);
let pkB = spk(skB) in out(c, pkB);
((!clientA(pkA, skA, pkB)) | (!serverB(pkB, skB, pkA)))
Chapter 4

Language features

In the previous chapter, the basic features of the language were introduced; we will now provide a more complete coverage of the language features. These features will be used in Chapter 5 to study the Needham-Schroeder public key protocol as a case study. More advanced features of the language will be discussed in Chapter 6 and the complete input grammar is presented in Appendix A for reference; the features presented in this chapter should be sufficient for most users.

4.1 Primitives and modeling features

In Section 3.1.1, we introduced the basic components of the declarations of the language and how to model processes; this section will develop our earlier presentation.

4.1.1 Constants

A constant may be defined as a function of arity 0, for example "fun c(): t." ProVerif also provides a specific construct for constants:

```latex
const c: t.
```

where c is the name of the constant and t is its type.

4.1.2 Data constructors and type conversion

Constructors `fun f(t_1, \ldots, t_n): t.` may be declared as items of data by appending `[data]`, that is,

```latex
fun f(t_1, \ldots, t_n): t [data].
```

A constructor declared as data is similar to a tuple: the adversary can construct and decompose data constructors. In other words, declaring a data constructor `f` as above implicitly declares `n` destructors that map `f(x_1, \ldots, x_n)` to `x_i`, where `i \in \{1, \ldots, n\}`. One can inverse a data constructor by pattern-matching: the pattern `f(T_1, \ldots, T_n)` is added as pattern in the grammar of Figure 3.3. The type of `T_1, \ldots, T_n` is the type of the arguments of `f`, so when `T_i` is a variable, its type can be omitted. For example, with the declarations

```latex
type key.

type host.

fun keyhost(key, host): bitstring [data].
```

we can write

```latex
let keyhost(k, h) = x in ...
```

Constructors declared `data` cannot be declared private.

One application of data constructors is type conversion. As discussed in Section 3.1.1, the type system occasionally makes it difficult to apply functions to arguments due to type mismatches. This can
be overcome with type conversion. A type converter is simply a special type of constructor defined as follows:

\[
\text{fun } tc(t) : t' \ [\text{data, typeConverter }].
\]

where the type converter \(tc \) takes input of type \(t \) and returns a result of type \(t' \). Observe that, since the constructor is a data constructor, the adversary may recover term \(M \) from the term \(tc(M) \). Intuitively, the keyword \texttt{typeConverter} means that the function is the identity function, and so has no effect except changing the type. By default, types are used for typechecking the protocol but during protocol verification, ProVerif ignores types. The \texttt{typeConverter} functions are thus removed. (This behavior allows ProVerif to detect type flaw attacks, in which the attacker mixes data of different types. This behavior can be changed by the setting \texttt{set ignoreTypes = ...} as discussed in Section 6.2.2.)

4.1.3 Enriched terms

For greater flexibility, we redefine our grammar for terms (Figure 3.2) to include restrictions, conditionals, and term evaluations as presented in Figure 4.1. The behavior of enriched terms will now be discussed. Names, variables, tuples, and constructor/destructor application are defined as standard. The term \texttt{new a : t; M} constructs a new name \(a \) of type \(t \) and then evaluates the enriched term \(M \). The term \texttt{if M then N else N'} is defined as \(N \) if the condition \(M \) is equal to true and \(N' \) when \(M \) does not fail but is not equal to true. If \(M \) fails, or the else branch is omitted and \(M \) is not equal to true, then the term \texttt{if M then N else N'} fails (like when no rewrite rule matches in the evaluation of a destructor). Similarly, \texttt{let T = M in N else N'} is defined as \(N \) if the pattern \(T \) is matched by \(M \), and the variables of \(T \) are bound by this pattern-matching. As before, if the pattern is not matched, then the enriched term is defined as \(N' \); and when the else branch is omitted, the term fails. The use of enriched terms will be demonstrated in the Needham-Schroeder case study in Section 5.3.

Figure 4.1 Enriched terms grammar

<table>
<thead>
<tr>
<th>(M, N :=)</th>
<th>enriched terms</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a, b, c, k, m, n, s)</td>
<td>names</td>
</tr>
<tr>
<td>(x, y, z)</td>
<td>variables</td>
</tr>
<tr>
<td>((M_1, \ldots, M_j))</td>
<td>tuple</td>
</tr>
<tr>
<td>(h(M_1, \ldots, M_j))</td>
<td>constructor/destructor application</td>
</tr>
<tr>
<td>(M = N)</td>
<td>term equality</td>
</tr>
<tr>
<td>(M <> N)</td>
<td>term inequality</td>
</tr>
<tr>
<td>(M && M)</td>
<td>conjunction</td>
</tr>
<tr>
<td>(M</td>
<td></td>
</tr>
<tr>
<td>(\text{not}(M))</td>
<td>negation</td>
</tr>
<tr>
<td>(\text{new a : t; M})</td>
<td>name restriction</td>
</tr>
<tr>
<td>(\text{if M then N else N'})</td>
<td>conditional</td>
</tr>
<tr>
<td>(\text{let T = M in N else N'})</td>
<td>term evaluation</td>
</tr>
</tbody>
</table>

ProVerif’s internal encoding for enriched terms. Enriched terms are a convenient tool for the end user; internally, ProVerif handles such constructs by encoding them: the conditional \texttt{if M then N else N'} is encoded as a special destructor also displayed as \texttt{if M then N else N'}; the restriction \texttt{new a : t; M} is expanded into a process; the term evaluation \texttt{let T = M in N else N'} is encoded as a mix of processes and special destructors. As an example, let us consider the following process.

```
1 free c : channel.
2
3 free A : bitstring.
4 free B : bitstring.
5
6 process
```
4.1. PRIMITIVES AND MODELING FEATURES

The process takes as input a pair of bitstrings \(x, y \) and checks that either \(x = A \) or \(x = B \). The term evaluation

\[
\text{let } z = (\text{if } y = A \text{ then new } n : \text{bitstring}; (x, n) \text{ else } (x, y)) \text{ in }
\]

is defined using the enriched term

\[
\text{if } y = A \text{ then new } n : \text{bitstring}; (x, n) \text{ else } (x, y)
\]

which evaluates to the tuple \((x, n) \) where \(n \) is a new name of type bitstring if \(y = A \); or \((x, y) \) otherwise. (Note that brackets have only been added for readability.) Internally, ProVerif encodes the above main process as:

1. \(\text{in}(c, (x: \text{bitstring}, y: \text{bitstring});) \)
2. \(\text{if } ((x = A) \text{ || } (x = B)) \text{ then } \)
3. \(\text{new } n : \text{bitstring}; \)
4. \(\text{let } z : \text{bitstring} = (\text{if } y = A \text{ then } (x, n) \text{ else } (x, y)) \text{ in } \)
5. \(\text{out}(c, z) \)

This encoding sometimes has visible consequences on the behavior of ProVerif. Note that this process was obtained by beautifying the output produced by ProVerif (see Section 3.3 for details on ProVerif output).

4.1.4 Tables and key distribution

ProVerif provides tables (or databases) for persistent storage. Tables must be specified in the declarations in the following form:

\[
\text{table } d(t_1, \ldots, t_n).
\]

where \(d \) is the name of the table which takes records of type \(t_1, \ldots, t_n \). Processes may populate and access tables, but deletion is forbidden. Note that tables are not accessible by the adversary. Accordingly, the grammar for processes is extended:

\[
\begin{align*}
\text{insert } & d(M_1, \ldots, M_n); P \quad \text{insert record} \\
\text{get } & d(T_1, \ldots, T_n) \text{ in } P \text{ else } Q \quad \text{read record}
\end{align*}
\]

The process \(\text{insert } d(M_1, \ldots, M_n); P \) inserts the record \(M_1, \ldots, M_n \) into the table \(d \) and then executes \(P \); when \(P \) is the 0 process, it may be omitted. The process \(\text{get } d(T_1, \ldots, T_n) \text{ in } P \text{ else } Q \) attempts to retrieve a record in accordance with patterns \(T_1, \ldots, T_n \). When several records can be matched, one possibility is chosen (but ProVerif considers all possibilities when reasoning) and the process \(P \) is evaluated with the free variables of \(T_1, \ldots, T_n \) bound inside \(P \). When no such record is found, the process \(Q \) is executed. The else branch can be omitted; in this case, when no suitable record is found, the process blocks. The \(\text{get} \) process also has a richer form \(\text{get } d(T_1, \ldots, T_n) \text{ suchthat } M \text{ in } P \text{ else } Q \); in this case, the retrieved record is required to satisfy the condition \(M \) in addition to matching the patterns \(T_1, \ldots, T_n \). The use of tables for key management will be demonstrated in the Needham-Schroeder public key protocol case study (Chapter 5).

As a side remark, tables can be encoded using private channels. We provide a specific construct since it is frequently used, it can be analyzed precisely by ProVerif (more precisely than some other uses of private channels), and it is probably easier to understand for users that are not used to the pi calculus.

4.1.5 Phases

Many protocols can be broken into phases, and their security properties can be formulated in terms of these phases. Typically, for instance, if a protocol discloses a session key after the conclusion of a session, then the secrecy of the data exchanged during that session may be compromised but not its authenticity. To enable modeling of protocols with several phases the syntax for processes is supplemented with a phase prefix \(\text{phase } t; P \), where \(t \) is a positive integer. Observe that all processes are under phase 0 by default and hence the instruction \(\text{phase } 0 \) is not allowed. Intuitively, \(t \) represents a global clock, and the process \(\text{phase } t; P \) is active only during phase \(t \). A process with phases is executed as follows. First, all instructions under phase 0 are executed, that is, all instructions not under phase \(i \geq 1 \). Then, during
a stage transition from phase 0 to phase 1, all processes which have not yet reached phase \(i \geq 1 \) are discarded and the process may then execute instructions under phase 1, but not under phase \(i \geq 2 \). More generally, when changing from phase \(n \) to phase \(n + 1 \), all processes which have not reached a phase \(i \geq n + 1 \) are discarded and instructions under phase \(n + 1 \), but not for phase \(i \geq n + 2 \), are executed. It follows from our description that it is not necessary for all instructions of a particular phase to be executed prior to phase transition. Moreover, processes may communicate only if they are under the same phase.

Phases can be used, for example, to prove forward secrecy properties: the goal is to show that, even if some participants get corrupted (so their secret keys are leaked to the adversary), the secrets exchanged in sessions that took place before the corruption are preserved. Corruption can be modeled in ProVerif by outputting the secret keys of the corrupted participants in phase 1; the secrets of the sessions run in phase 0 should be preserved. This is done for the fixed handshake protocol of the previous chapter in the following example (file docs/ex_handshake_forward_secrecy_skB.pv):

```
1  free c : channel .
2
3  free s : bitstring [private] .
4  query attacker(s) .
5
6  let clientA (pkA : pkey , skA : skey , pkB : spkey ) =
7     out(c , pkA ) ;
8     in (c , x : bitstring ) ;
9     let y = adec(x , skA ) in
10    let (=pkA , =pkB , k : key ) = checksign (y , pkB ) in
11    out(c , senc(s , k ) ) .
12
13  let serverB (pkB : spkey , skB : sskey , pkA : pkey ) =
14     in (c , pkX : pkey ) ;
15     new k : key ;
16     out(c , aenc (sign((pkX , pkB , k ) , skB ) , pkX )) ;
17     in (c , x : bitstring ) ;
18     let z = sdec(x , k ) .
19
20  process
21     new skA : skey ;
22     new skB : sskey ;
23     let pkA = pk(skA ) in out(c , pkA ) ;
24     let pkB = spk(skB ) in out(c , pkB ) ;
25     ( (!clientA(pkA , skA , pkB )) ν (!serverB(pkB , skB , pkA )) ) ∨
26     phase 1 ; out(c , skB )
```

The secret key \(skB \) of the server \(B \) is leaked in phase 1 (last line). The secrecy of \(s \) is still preserved in this example: the adversary can impersonate \(B \) in phase 1, but cannot decrypt messages of sessions run in phase 0. (Note that one could hope for a stronger model: this model does not consider sessions that are running precisely when the key is leaked. While the adversary can simulate \(B \) in phase 1, the model above does not run \(A \) in phase 1; one could easily add a model of \(A \) in phase 1 if desired.) In contrast, if the secret key of the client \(A \) is leaked, then the secrecy of \(s \) is not preserved: the adversary can decrypt the messages of previous sessions by using \(skA \), and thus obtain \(s \).

4.2 Further cryptographic operators

In Section 3.1.1, we introduced how to model the relationships between cryptographic operations and in Section 3.1.2 we considered the formalization of basic cryptographic primitives needed to model the handshake protocol. This section will consider more advanced formalisms and provide a small library of cryptographic primitives.
4.2. FURTHER CRYPTOGRAPHIC OPERATORS

4.2.1 Extended destructors

We introduce an extended way to define the behaviour of destructors [CB13].

\[
\text{fun } g(t_1, \ldots, t_k) : t \\
\text{reduc } \text{forall } x_{1,1} : t_{1,1}, \ldots, x_{1,n_1} : t_{1,n_1}; g(M_{1,1}, \ldots, M_{1,k}) = M_{1,0} \\
\text{otherwise } \ldots \\
\text{otherwise forall } x_{m,1} : t_{m,1}, \ldots, x_{m,n_m} : t_{m,n_m}; g(M_{m,1}, \ldots, M_{m,k}) = M_{m,0}.
\]

This declaration should be seen as a sequence of rewrite rules rather than as a set of rewrite rules. Thus, when the term \(g(N_1, \ldots, N_n)\) is encountered, ProVerif will try to apply the first rewrite rule of the sequence, \(\text{forall } x_{1,1} : t_{1,1}, \ldots, x_{1,n_1} : t_{1,n_1}; g(M_{1,1}, \ldots, M_{1,k}) = M_{1,0}\). If this rewrite rule is applicable, then the term \(g(N_1, \ldots, N_n)\) is reduced according to that rewrite rule. Otherwise, ProVerif tries the second rewrite rule of the sequence and so on. If no rule can be applied, the destructor fails. This definition of destructors allows one to define new destructors that could not be defined with the definition of Section 3.1.1.

\[
\text{fun } \text{eq} \ (\text{bitstring , bitstring }): \text{bool} \\
\text{reduc } \text{forall } x : \text{bitstring}; \text{eq}(x, x) = \text{true} \\
\text{otherwise } \text{forall } x : \text{bitstring}, y : \text{bitstring}; \text{eq}(x, y) = \text{false}.
\]

With this definition, \(\text{eq}(M, N)\) can be reduced to false only if \(M\) and \(N\) are different modulo the equational theory.

As previously mentioned, when no rule can be applied, the destructor fails. However, this formalism does not allow a destructor to succeed when one of its arguments fails. To lift this restriction, we allow to represent the case of failure by the special value \(\text{fail}\).

\[
\text{fun } \text{test} \ (\text{bool , bitstring , bitstring }): \text{bitstring} \\
\text{reduc } \text{forall } x : \text{bitstring}, y : \text{bitstring}; \text{test}(\text{true }, x, y) = x \\
\text{otherwise } \text{forall } c : \text{bool}, x : \text{bitstring}, y : \text{bitstring}; \text{test}(c, x, y) = y \\
\text{otherwise forall } x : \text{bitstring}, y : \text{bitstring}; \text{test}(\text{fail }, x, y) = y.
\]

In the previous example, the function test returns the third argument even when the first argument fails. A variable \(x\) of type \(t\) can be declared as a possible failure by the syntax: \(x : t \text{ or fail}\). It indicates that \(x\) can be any message or even the special value \(\text{fail}\). Relying on this new declaration of variables, the destructor test could have been defined as follows:

\[
\text{fun } \text{test} \ (\text{bool , bitstring , bitstring }): \text{bitstring} \\
\text{reduc } \text{forall } x : \text{bitstring}, y : \text{bitstring}; \text{test}(\text{true }, x, y) = x \\
\text{otherwise forall } c : \text{bool or fail}, x : \text{bitstring}, y : \text{bitstring}; \\
\text{test}(c, x, y) = y.
\]

A variant of this test destructor is the following one:

\[
\text{fun } \text{test}' \ (\text{bool , bitstring , bitstring }): \text{bitstring} \\
\text{reduc } \text{forall } x : \text{bitstring or fail}, y : \text{bitstring or fail}; \text{test}'(\text{true }, x, y) = x \\
\text{otherwise forall } c : \text{bool or fail}, x : \text{bitstring or fail}, y : \text{bitstring or fail}; \\
\text{test}'(c, x, y) = y.
\]

This destructor returns its second argument when the first argument \(c\) is true, its third argument when the first argument \(c\) does not fail but is not true, and fails otherwise. With this definition, when the first argument is true, \(\text{test}'\) returns the second argument even when the third argument fails (which models that the third argument does not need to be evaluated in this case). Symmetrically, when the first argument does not fail but is not true, \(\text{test}'\) returns the third argument even when the second argument fails. In contrast, the previous destructor test fails when its second or third arguments fail.

It is also possible to transform the special failure value \(\text{fail}\) into a non-failure value \(c_0\) by a destructor:
Such a destructor is used internally by ProVerif.

4.2.2 Equations

Certain cryptographic primitives, such as the Diffie-Hellman key agreement, cannot be encoded as destructors, because they require algebraic relations between terms. Accordingly, ProVerif provides an alternative model for cryptographic primitives, namely equations. The relationships between constructors are captured using equations of the form

\[
equation \forall x_1 : t_1, \ldots, x_n : t_n ; \ M = N.
\]

where \(M \), \(N \) are terms built from the application of (defined) constructor symbols to the variables \(x_1, \ldots, x_n \) of type \(t_1, \ldots, t_n \). Note that when no variables are required (that is, when terms \(M, N \) are constants) \(\forall x_1 : t_1, \ldots, x_n : t_n ; \) may be omitted.

More generally, one can declare several equations at once, as follows:

\[
equation \forall x_{1,1} : t_{1,1}, \ldots, x_{1,n_1} : t_{1,n_1} ; \ M_1 = N_1 ; \ldots \forall x_{m,1} : t_{m,1}, \ldots, x_{m,n_m} : t_{m,n_m} ; \ M_m = N_m \ option .
\]

where \(option \) can either be empty, \([\text{convergent}] \), or \([\text{linear}] \). When an option \([\text{convergent}] \) or \([\text{linear}] \) is present, it means that the group of equations is convergent (the equations, oriented from left to right, form a convergent rewrite system) or linear (each variable occurs at most once in the left-hand and once in the right-hand side of each equation), respectively. In this case, this group of equations must use function symbols that appear in no other equation. ProVerif checks that the convergent or linear option is correct. However, in case ProVerif cannot prove termination of the rewrite system associated to equations declared \([\text{convergent}] \), it just displays a warning, and continues assuming that the rewrite system terminates. Indeed, ProVerif’s algorithm for proving termination is obviously not complete, so the rewrite system may terminate and ProVerif not be able to prove it. The main interest of the \([\text{convergent}] \) option is then to bypass the verification of termination of the rewrite system.

Performance. It should be noted that destructors are more efficient than equations. The use of destructors is therefore advocated where possible.

Limitations. ProVerif does not support all equations. It must be possible to split the set of equations into two kinds of equations that do not share constructor symbols: convergent equations and linear equations. Convergent equations are equations that, when oriented from left to right, form a convergent (that is, terminating and confluent) rewriting system. Linear equations are equations such that each variable occurs at most once in the left-hand side and at most once in the right-hand side. When ProVerif cannot split the equations into convergent equations and linear equations, an error message is displayed.

Moreover, even when the equations can be split as above, it may happen that the pre-treatment of equations by ProVerif does not terminate. Essentially, ProVerif computes rewrite rules that encode the equations and it requires that, when \(M_1, \ldots, M_n \) are in normal form, the normal form of \(f(M_1, \ldots, M_n) \) can be computed by a single rewrite step. For some equations, this constraint implies generating an infinite number of rewrite rules, so in this case ProVerif does not terminate. For instance, associativity cannot be handled by ProVerif for this reason, which prevents the modeling of primitives such as XOR (exclusive or) or groups. Another example that leads to non-termination for the same reason is the equation \(f(g(x)) = g(f(x)) \). In the obtained rewrite rules, all variables that occur in the right-hand side must also occur in the left-hand side.

It is also worth noting that, because ProVerif orients equations from left to right when it builds the rewrite system, the orientation in which the equations are written may influence the success or failure of
4.2. FURTHER CRYPTOGRAPHIC OPERATORS

ProVerif (even if the semantics of the equation obviously does not depend on the orientation). Informally, the equations should be written with the most complex term on the left and the simplest one on the right.

Even with these limitations, many practical primitives can be modeled by equations in ProVerif, as illustrated below.

Diffie-Hellman key agreement. The Diffie-Hellman key agreement relies on modular exponentiation in a cyclic group \(G \) of prime order \(q \); let \(g \) be a generator of \(G \). A principal \(A \) chooses a random exponent \(a \) in \(\mathbb{Z}_q^* \) and sends \(g^a \) to \(B \). Similarly, \(B \) chooses a random exponent \(b \), and sends \(g^b \) to \(A \). Then \(A \) computes \((g^b)^a \) and \(B \) computes \((g^a)^b \). These two keys are equal, since \((g^b)^a = (g^a)^b \), and cannot be obtained by a passive adversary who has \(g^a \) and \(g^b \) but neither \(a \) nor \(b \).

We model the Diffie-Hellman key agreement as follows:

```
1 type G.
2 type exponent.
3 const g : G [data].
4 fun exp(G, exponent) : G.
5 equation forall x: exponent, y: exponent; exp(exp(g, x), y) = exp(exp(g, y), x).
```

The elements of \(G \) have type \(G \), the exponents have type \(exponent \), \(g \) is the generator \(g \), and \(exp \) models modular exponentiation \(\text{exp}(x, y) = x^y \). The equation means that \((g^x)^y = (g^y)^x \).

This model of Diffie-Hellman key agreement is limited in that it just takes into account the equation needed for the protocol to work, while there exist other equations, coming from the multiplicative group \(\mathbb{Z}_q^* \). A more complete model is out of scope of the current treatment of equations in ProVerif, because it requires an associative function symbol, but extensions have been proposed to handle it [KT09].

Symmetric encryption. We model a symmetric encryption scheme for which one cannot distinguish whether decryption succeeds or not. We consider the binary constructors \(\text{senc} \) and \(\text{sdec} \), the arguments of which are of types \(\text{bitstring} \) and \(\text{key} \).

```
1 type key.
2 fun senc(bitstring, key) : bitstring.
3 fun sdec(bitstring, key) : bitstring.
```

To model the properties of decryption, we introduce the equations:

```
5 equation forall m: bitstring, k: key; sdec(senc(m, k), k) = m.
6 equation forall m: bitstring, k: key; senc(sdec(m, k), k) = m.
```

where \(k \) represents the symmetric key and \(m \) represents the message. The first equation is standard: it expresses that, by decrypting the ciphertext with the correct key, one gets the plaintext. The second equation might seem more surprising. It implies that encryption and decryption are two inverse bijections; it is satisfied by block ciphers, for instance. One can also note that this equation is necessary to make sure that one cannot distinguish whether decryption succeeds or not: without this equation, \(\text{sdec}(M, k) \) succeeds if and only if \(\text{senc}(\text{sdec}(M, k), k) = M \).

4.2.3 Function macros

Sometimes, terms that consist of more than just a constructor or destructor application are repeated many times. ProVerif provides a macro mechanism in order to define a function symbol that represents that term and avoid the repetition. Function macros are defined by the following declaration:

```
letfun f(x1: t1 [or fail], ..., xj: tj [or fail]) = M.
```

where the macro \(f \) takes arguments \(x_1, \ldots, x_j \) of types \(t_1, \ldots, t_j \) and evaluates to the enriched term \(M \) (see Figure 4.1). The type of the function macro \(f \) is inferred from the type of \(M \). The optional \(or fail \)
after the type of each argument allows the user to control the behavior of the function macro in case some of its arguments fail:

- If \texttt{or fail} is absent and the argument fails, the function macro fails as well. For instance, with the definitions

 \begin{verbatim}
 fun h(): t
 reduc h() = fail.

 letfun f(x:t) =
 let y = x in c0 else c1.
 \end{verbatim}

 \(h()\) is \texttt{fail} and \(f(h())\) returns \texttt{fail} and \(f\) never returns \(c1\).

- If \texttt{or fail} is present and the argument fails, the failure value is passed to the function macro, which may for instance catch it and return some non-failure result. For instance, with the same definition of \(h\) as above and the following definition of \(f\)

 \begin{verbatim}
 letfun f(x:t or fail) =
 let y = x in c0 else c1.
 \end{verbatim}

 \(f(h())\) returns \(c1\).

Function macros can be used as constructors/destructors \(h\) in terms (see Figure 4.1). The applicability of function macros will be demonstrated by the following example.

Probabilistic asymmetric encryption. Recall that asymmetric cryptography makes use of the unary constructor \texttt{pk}, which takes an argument of type \texttt{skey} (private key) and returns a \texttt{pkey} (public key). Since the constructors of ProVerif always represent deterministic functions, we model probabilistic encryption by considering a constructor that takes the random coins used inside the encryption algorithm as an additional argument, so probabilistic asymmetric encryption is modeled by a ternary constructor \texttt{internal_aenc}, which takes as arguments a message of type \texttt{bitstring}, a public key of type \texttt{pkey}, and random coins of type \texttt{coins}. When encryption is used properly, the random coins must be freshly chosen at each encryption, so that the encryption of \(x\) under \(y\) is modeled by \texttt{new r: coins; internal_aenc(x,y,r)}. In order to avoid writing this code at each encryption, we can define a function macro \texttt{aenc}, which expands to this code, as shown below. Decryption is defined in the usual way.

\begin{verbatim}
 type skey.
type pkey.
type coins.

 fun pk(skey): pkey.
 fun internal_aenc(bitstring, pkey, coins): bitstring.

 reduc forall m: bitstring, k:skey, r:coins;
 aenc(internal_aenc(m,pk(k),r),k) = m.

 letfun aenc(x: bitstring, y:pkey) = new r: coins; internal_aenc(x,y,r).
\end{verbatim}

Observe that the use of probabilistic cryptography increases the complexity of the model due to the additional names introduced. This may slow down the analysis process.

4.2.4 Process macros with fail

Much like function macros above, process macros may also be declared with arguments of type \(t\) \texttt{or fail}:

\begin{verbatim}
 let p(x_1 : t_1 [or fail], ..., x_j : t_j [or fail]) = P.
\end{verbatim}

The optional \texttt{or fail} after the type of each argument allows the user to control the behavior of the process in case some of its arguments fail:
• If \texttt{or fail} is absent and the argument fails, the process blocks. For instance, with the definitions

\begin{verbatim}
fun h(): t
reduc h() = fail.
\end{verbatim}

\begin{verbatim}
let p(x:t) =
 let y = x in out(c, c0) else out(c, c1).
\end{verbatim}

\(p(h())\) does nothing and \(p\) never outputs \(c1\).

• If \texttt{or fail} is present and the argument fails, the failure value is passed to the process, which may for instance catch it and continue to run. For instance, with the same definition of \(h\) as above and the following definition of \(p\)

\begin{verbatim}
let p(x:t or fail) =
 let y = x in out(c, c0) else out(c, c1).
\end{verbatim}

\(p(h())\) outputs \(c1\) on channel \(c\).

4.2.5 Suitable formalizations of cryptographic primitives

In this section, we present various formalizations of basic cryptographic primitives, and relate them to the assumptions on these primitives. We would like to stress that we make \textit{no computational soundness claims}: ProVerif relies on the symbolic, Dolev-Yao model of cryptography; its results do not apply to the computational model, at least not directly. If you want to obtain proofs of protocols in the computational model, you should use other tools, for instance CryptoVerif (http://cryptoverif.inria.fr). Still, even in the symbolic model, some formalizations correspond better than others to certain assumptions on primitives. The goal of this section is to help you find the best formalization for your primitives.

Hash functions. A hash function is represented as a unary constructor \(h\) with no associated destructor or equations. The constructor takes as input, and returns, a bitstring. Accordingly, we define:

\begin{verbatim}
fun h(bitstring): bitstring.
\end{verbatim}

The absence of any associated destructor or equational theory captures pre-image resistance, second pre-image resistance and collision resistance properties of cryptographic hash functions. In fact, far stronger properties are ensured: this model of hash functions is close to the random oracle model.

Symmetric encryption. The most basic formalization of symmetric encryption is the one based on decryption as a destructor, given in Section 3.1.2. However, formalizations that are closer to practical cryptographic schemes are as follows:

1. For block ciphers, which are deterministic, bijective encryption schemes, a better formalization is the one based on equations and given in Section 4.2.2.

2. Other symmetric encryption schemes are probabilistic. This can be formalized in a way similar to what was presented for probabilistic public-key encryption in Section 4.2.3.

\begin{verbatim}
type key.
type coins.

fun internal_senc(bitstring, key, coins):bitstring.
reduc forall m:bitstring, k:key, r:coins;
 sdec(internal_senc(m,k,r),k) = m.

letfun senc(x:bitstring, y:key) = new r: coins; internal_senc(x,y,r).
\end{verbatim}
As shown in [CHW06], for protocols that do not test equality of ciphertexts, for secrecy and authentication, one can use the simpler, deterministic model of Section 3.1.2. However, for observational equivalence properties, or for protocols that test equality of ciphertexts, using the probabilistic model does make a difference.

Note that these encryption schemes generally leak the length of the cleartext. (The length of the ciphertext depends on the length of the cleartext.) This is not taken into account in this formalization, and generally difficult to take into account in formal protocol provers, because it requires arithmetic manipulations. For some protocols, one can argue that this is not a problem, for example when the length of the messages is fixed in the protocol, so it is a priori known to the adversary. Block ciphers are not concerned by this comment since they encrypt data of fixed length.

Also note that, in this formalization, encryption is authenticated. In this respect, this formalization is close to IND-CPA and INT-CTXT symmetric encryption. So it does not make sense to add a MAC (message authentication code) to such an encryption, as one often does to obtain authenticated encryption from unauthenticated encryption: the MAC is already included in the encryption here. If desired, it is sometimes possible to model malleability properties of some encryption schemes, by adding the appropriate equations. However, it is difficult to model general unauthenticated encryption (IND-CPA encryption) in formal protocol provers.

In this formalization, encryption hides the encryption key. If one wants to model an encryption scheme that does not conceal the key, one can add the following destructor [ABCL09]:

\[
\text{reduc \forall m: \text{bitstring}, k: \text{key}, r: \text{coins}, m': \text{bitstring}, r': \text{coins;}}
\]

\[
\text{samekey(\text{internal}_\text{senc}(m,k,r), \text{internal}_\text{senc}(m',k,r')) = true.}
\]

This destructor allows the adversary to test whether two ciphertexts have been built with the same key. The presence of such a destructor makes no difference for reachability properties (secrecy, correspondences) since it does not enable the adversary to construct terms that it could not construct otherwise. However, it does make a difference for observational equivalence properties. (Note that it would obviously be a serious mistake to give out the encryption key to the adversary, in order to model a scheme that does not conceal the key.)

Asymmetric encryption. A basic, deterministic model of asymmetric encryption has been given in Section 3.1.2. However, cryptographically secure asymmetric encryption schemes must be probabilistic. So a better model for asymmetric encryption is the probabilistic one given in Section 4.2.3. As shown in [CHW06], for protocols that do not test equality of ciphertexts, for secrecy and authentication, one can use the simpler, deterministic model of Section 3.1.2. However, for observational equivalence properties, or for protocols that test equality of ciphertexts, using the probabilistic model does make a difference.

It is also possible to model that the encryption leaks the key. Since the encryption key is public, we can do this simply by giving the key to the adversary:

\[
\text{reduc \forall m: \text{bitstring}, pk: \text{pkey}, r: \text{coins;}}
\]

\[
\text{getkey(\text{internal}_\text{aenc}(m,pk,r)) = pk.}
\]

The previous models consider a unary constructor pk that computes the public key from the secret key. An alternative (and equivalent) formalism for asymmetric encryption considers the unary constructors pk', sk' which take arguments of type seed', to capture the notion of constructing a key pair from some seed.

\[
\text{type seed'}.
\]

\[
\text{type pkey'}.
\]

\[
\text{type skey'}.
\]

\[
\text{fun pk'(seed') : pkey'.}
\]

\[
\text{fun sk'(seed') : skey'.}
\]

\[
\text{fun aenc'(bitstring, pkey') : bitstring.}
\]

\[
\text{reduc \forall m: \text{bitstring}, k: seed'; \text{aenc'}(\text{aenc'}(m,pk'(k)), sk'(k)) = m.}
\]
The addition of single quotes ('') is only for distinction between the different formalizations. We have given here the deterministic version, a probabilistic version is obviously also possible.

Digital signatures. The Handbook of Applied Cryptography defines four different classes of digital signature schemes [MvOV96, Figure 11.1], we explain how to model these four classes. Deterministic signatures with message recovery were already modeled in Section 3.1.2. Probabilistic signatures with message recovery can be modeled as follows, using the same ideas as for asymmetric encryption:

\[
\text{type sskey.} \\
\text{type spkey.} \\
\text{type scoins.} \\
\text{fun spk(sskey):spkey.} \\
\text{fun internal_sign(bitstring, sskey, scoins):bitstring.} \\
\text{reduc forall m:bitstring, k:sskey, r:scoins; getmess(internal_sign(m,k,r)) = m.} \\
\text{reduc forall m:bitstring, k:sskey, r:scoins; checksign(internal_sign(m,k,r),spk(k)) = m.} \\
\text{letfun sign(m:bitstring, k:sskey) = new r:scoins; internal_sign(m,k,r).}
\]

There also exist signatures that do not allow message recovery, named digital signatures with appendix in [MvOV96]. Here is a model of such signatures in the deterministic case:

\[
\text{type sskey'.} \\
\text{type spkey'.} \\
\text{fun spk'(sskey'):spkey'.} \\
\text{fun sign'(bitstring, sskey'):bitstring.} \\
\text{reduc forall m:bitstring,k:sskey'; checksign'(sign'(m,k),spk'(k),m) = true.}
\]

For such signatures, the message must be given when verifying the signature, and signature verification just returns true when it succeeds. Note that these signatures hide the message as if it were encrypted; this is often a stronger property than desired. Probabilistic signatures with appendix can also be modeled by combining the models given above.

It is also possible to model that the signature leaks the key. Obviously, we must not leak the secret key, but we can leak the corresponding public key using the following destructor:

\[
\text{reduc forall m:bitstring,k:sskey,r:scoins; getkey(internal_sign(m,k,r)) = spk(k).}
\]

This model is for probabilistic signatures; it can be straightforwardly adapted to deterministic signatures.

Finally, as for asymmetric encryption, we can also consider unary constructors pk', sk' which take arguments of type seed', to capture the notion of constructing a key pair from some seed. We leave the construction of these models to the reader.

Message authentication codes. Message authentication codes (MACs) can be formalized by a constructor with no associated destructor or equation, much like a keyed hash function:

\[
\text{type mkey.} \\
\text{fun mac(bitstring, mkey):bitstring.}
\]

This model is very strong: it considers the MAC essentially as a random oracle, which is much stronger than the typical computational assumption on MACs (unforgeability). We also remind the reader that using MACs in conjunction with symmetric encryption is generally useless in ProVerif since the basic encryption is already authenticated.
Other primitives. A simple model of Diffie-Hellman key agreements is given in Section 4.2.2, bit-commitment and blind signatures are formalized in [KR05, DKR09], and non-interactive zero-knowledge proofs are formalized in [BMU08]. Since defining correct models for cryptographic primitives is difficult, we recommend reusing existing definitions, such as the ones given in this manual.

4.3 Further security properties

In Section 3.2, the basic security properties that ProVerif is able to prove were introduced. In this section, we generalize our earlier presentation and introduce further security properties. Advanced properties are listed in Section 6.1.

ProVerif is sound, but not complete. ProVerif’s ability to reason with reachability, correspondences, and observational equivalence is sound (sometimes called correct); that is, when ProVerif says that a property is satisfied, then the model really does guarantee that property. However, ProVerif is not complete; that is, ProVerif may not be capable of proving a property that holds. Sources of incompleteness are detailed in Section 6.3.4.

4.3.1 Complex correspondence assertions, secrecy, and events

In Section 3.2.2, we demonstrated how to model correspondence assertions of the form: “if an event e has been executed, then event e’ has been previously executed.” We will now generalize these assertions considerably. The syntax for correspondence assertions is revised as follows:

\[
\text{query } x_1 : t_1, \ldots, x_n : t_n ; \ q
\]

where the query \(q \) is constructed by the grammar presented in Figure 4.2, such that all terms appearing in \(q \) are built by the application of constructors to the variables \(x_1, \ldots, x_n \) of types \(t_1, \ldots, t_n \) and all events appearing in \(q \) have been declared with the appropriate type. Equalities and inequalities are not allowed before an arrow \(\Rightarrow \) or alone as single fact in the query. If \(q \) or a subquery of \(q \) is of the form \(F \Rightarrow H \) and \(H \) contains an injective event, then \(F \) must be an injective event. If \(F \) is a non-injective event, it is automatically transformed into an injective event by ProVerif. We will explain the meaning of these queries through many examples.

Reachability

This corresponds to the case in which the query \(q \) is just a fact \(F \). Such a query is in fact an abbreviation for \(F \Rightarrow \text{false} \), that is, \(\text{not} \ F \). In other words, ProVerif tests whether \(F \) holds, but returns the following results:

- “RESULT \(\text{not} \ F \) is true.” when \(F \) never holds.
- “RESULT \(\text{not} \ F \) is false.” when there exists a trace in which \(F \) holds, and ProVerif displays such a trace.
- “RESULT \(\text{not} \ F \) cannot be proved.” when ProVerif cannot decide either way.

For instance, we have seen query attacker\((M)\) before: this query tests the secrecy of the term \(M \) and ProVerif returns “RESULT \(\text{not} \) attacker\((M)\) is true.” when \(M \) is secret, that is, the adversary cannot reconstruct \(M \). When phases (see Section 4.1.5) are used, this query returns “RESULT \(\text{not} \) attacker\((M)\) is true.” when \(M \) is secret in all phases, or equivalently in the last phase. When \(M \) contains variables, they must be declared with their type at the beginning of the query, and ProVerif returns “RESULT \(\text{not} \) attacker\((M)\) is true.” when all instances of \(M \) are secret.

We can test secrecy in a specific phase \(n \) by query attacker\((M)\) phase \(n \), which returns “RESULT \(\text{not} \) attacker\((M)\) phase \(n \) is true.” when \(M \) is secret in phase \(n \), that is, the adversary cannot reconstruct \(M \) in phase \(n \).

We can also test whether the protocol sends a term \(M \) on a channel \(N \) (during the last phase if phases are used) by query mess\((N, M)\). This query returns “RESULT \(\text{not} \) mess\((N, M)\) is true.” when
Figure 4.2 Grammar for correspondence assertions

\[
q ::= \text{query} \\
F ::= \text{fact} \\
F =\rightarrow H ::= \text{correspondence} \\
H ::= \text{hypothesis} \\
F ::= \text{fact} \\
H \&\& H ::= \text{conjunction} \\
H || H ::= \text{disjunction} \\
(F =\rightarrow H) ::= \text{nested correspondence} \\
F ::= \text{fact} \\
\text{attacker}(M) ::= \text{the adversary has } M \text{ (in any phase)} \\
\text{attacker}(M) \text{ phase } n ::= \text{the adversary has } M \text{ in phase } n \\
\text{mess}(N, M) ::= M \text{ is sent on channel } N \text{ (in the last phase)} \\
\text{mess}(N, M) \text{ phase } n ::= M \text{ is sent on channel } N \text{ in phase } n \\
\text{table}(d(M_1, \ldots, M_n)) ::= \text{the element } M_1, \ldots, M_n \text{ is in table } d \text{ (in any phase)} \\
\text{table}(d(M_1, \ldots, M_n)) \text{ phase } n ::= \text{the element } M_1, \ldots, M_n \text{ is in table } d \text{ in phase } n \\
\text{event}(e(M_1, \ldots, M_n)) ::= \text{non-injective event} \\
\text{inj--event}(e(M_1, \ldots, M_n)) ::= \text{injective event} \\
M = N ::= \text{equality} \\
M <> N ::= \text{inequality}
\]

the message \(M \) is never sent on channel \(N \). We can also specify which phase should be considered by \text{query} \text{mess}(N, M) \text{ phase } n. This query is intended for use when the channel \(N \) is private (the adversary does not have it). When the adversary has the channel \(N \), this query is equivalent to \text{query} \text{attacker}(M).

Similarly, we can test whether the element \((M_1, \ldots, M_n)\) is present in table \(d \) by \text{query} \text{table}(d(M_1, \ldots, M_n)).

ProVerif can also evaluate the reachability of events within a model using the following query:

\[
\text{query} \ x_1 : t_1, \ldots, x_n : t_n ; \ \text{event}(e(M_1, \ldots, M_k)).
\]

This query returns “RESULT not \text{event}(e(M_1, \ldots, M_k)) \text{ is true.}” when the event is not reachable. Such queries are useful for debugging purposes, for example, to detect unreachable branches of a model. With reference to the “Hello World” script \(\text{docs/hello_ext.pv} \) in Chapter 2, one could examine as to whether the else branch is reachable.

The similar query with \text{inj--event} instead of \text{event} is useless: it has the same meaning as the one with \text{event}. Injectable events are useful only for correspondences described below. Equalities and inequalities are not allowed in reachability queries as mentioned above.

Basic correspondences

Basic correspondences are queries \(q = F =\rightarrow H \) where \(H \) does not contain nested correspondences. They mean that, if \(F \) holds, then \(H \) also holds. We have seen such correspondences in Section 3.2.2. We can extend them to conjunctions and disjunctions of events in \(H \). For instance,

\[
\text{query} \ \text{event}(e_0) =\rightarrow \text{event}(e_1) \ \&\& \ \text{event}(e_2).
\]

means that, if \(e_0 \) has been executed, then \(e_1 \) and \(e_2 \) have been executed. Similarly,

\[
\text{query} \ \text{event}(e_0) =\rightarrow \text{event}(e_1) \ || \ \text{event}(e_2).
\]

means that, if \(e_0 \) has been executed, then \(e_1 \) or \(e_2 \) has been executed.

Conjunctions and disjunctions can be combined:

\[
\text{query} \ \text{event}(e_0) =\rightarrow \text{event}(e_1) \ || \ (\text{event}(e_2) \ \&\& \ \text{event}(e_3)).
\]
mean that, if e_0 has been executed, then either e_1 has been executed, or e_2 and e_3 have been executed. The conjunction has higher priority than the disjunction, but one should use parentheses to disambiguate the expressions. The events can of course have arguments, and can also be injective events. For instance,

$$\text{query } \text{inj-event}(e_0) \implies \text{event}(e_1) \mid (\text{inj-event}(e_2) \&\& \text{event}(e_3)).$$

means that each execution of e_0 corresponds to either an execution of e_1 (perhaps the same execution of e_1 for different executions of e_0), or to a distinct execution of e_2 and an execution of e_3. Note that using inj-event or event before the arrow \implies does not change anything, since event is automatically changed into inj-event before \implies when there is inj-event after the arrow \implies.

Correspondences may also involve the knowledge of the adversary or the messages sent on channels. For instance,

$$\text{query } \text{attacker}(M) \implies \text{event}(e_1).$$

means that, when the adversary knows M, the event e_1 has been executed. Conversely,

$$\text{query } \text{event}(e_1) \implies \text{attacker}(M).$$

means that, when event e_1 has been executed, the adversary knows M. (In practice, ProVerif may have more difficulties proving the latter correspondence. Technically, ProVerif needs to conclude attacker(M) from facts that occur in the hypothesis of a clause that concludes \text{event}(e_1); this hypothesis may get simplified during the resolution process in a way that makes the desired facts disappear.)

One may also use equalities and inequalities after the arrow \implies. For instance, assuming a free name a,

$$\text{query } x : t; \text{event}(e(x)) \implies x = a.$$

means that the event $e(x)$ can be executed only when x is a. Similarly,

$$\text{query } x : t, y : t'; \text{event}(e(x)) \implies \text{event}(e'(y)) \&\& x = f(y)$$

means that, when the event $e(x)$ is executed, the event \text{event}(e'(y)) has been executed and $x = f(y)$. Using inequalities,

$$\text{query } x : t; \text{event}(e(x)) \implies x \iff a.$$

means that the event $e(x)$ can be executed only when x is different from a.

Queries with a conjunction of events before the arrow \implies cannot be written directly but can be encoded as follows. Suppose that you want to prove a query

$$\text{event}(e_1(M_1)) \&\& \ldots \&\& \text{event}(e_n(M_n)) \implies H$$

in a process Q and that the events e_1, \ldots, e_n do not occur in H. (We consider events of arity 1 for simplifying notations; the idea extends easily to events of any arity.) Let Q' be obtained from Q by replacing all occurrences of \text{event} $e_i(M')$ with \text{insert} $de_i(M')$ where the tables de_i are declared by:

$$\text{table } de_i(t_i).$$

where t_i is the type of the argument of e_i. Define the process Q'' by

$$Q' \mid (\text{!get } de_1(x_1) \text{ in } \ldots \text{ get } de_n(x_n) \text{ in } \text{event } eg(x_1, \ldots, x_n))$$

where the event eg is declared by

$$\text{event } eg(t_1, \ldots, t_n).$$

and prove the query

$$\text{query } \text{event}(eg(M_1, \ldots, M_n)) \implies H.$$

in the process Q''. When $eg(M_1', \ldots, M_n')$ is executed in Q'', the messages M_1', \ldots, M_n' have been inserted in tables de_1, \ldots, de_n respectively, so the events $e_1(M_1'), \ldots, e_n(M_n')$ have been executed in Q. Conversely, when the events $e_1(M_1'), \ldots, e_n(M_n')$ have been executed in Q, one can obtain a corresponding trace of Q'' by inserting M_i' in de_i instead of executing $e_i(M_i')$. After all these insertions, M_i' is in table de_i for all $1 \leq i \leq n$, so we can execute \text{event} $eg(M_1', \ldots, M_n')$ using the last component of Q''. This technique is illustrated in Section 5.4.2.
Nested correspondences

The grammar permits the construction of nested correspondences, that is, correspondences $F \Longrightarrow H$ in which some of the events H are replaced with correspondences. Such correspondences allow us to order events. More precisely, in order to explain a nested correspondence $F \Longrightarrow H$, let us define a hypothesis H_s by replacing all arrows $== \Longrightarrow$ of H with conjunctions $\&\&$. The nested correspondence $F \Longrightarrow H$ holds if and only if the basic correspondence $F \Longrightarrow H_s$ holds and additionally, for each $F' \Longrightarrow H'$ that occurs in $F \Longrightarrow H$, if F' is an event, then the events of H' have been executed before F'. For example,

$$\text{event}(e_0) \Longrightarrow \left(\text{event}(e_1) \Longrightarrow \left(\text{event}(e_2) \Longrightarrow \text{event}(e_3) \right) \right)$$

is true when, if the event e_0 has been executed, then events e_2, e_3, e_1 have been previously executed in that order and before e_0. In contrast, the correspondence

$$\text{event}(e_0) \Longrightarrow \left(\text{event}(e_1) \Longrightarrow \text{event}(e_2) \right) \&\&(\text{event}(e_3) \Longrightarrow \text{event}(e_4))$$

holds when, if the event e_0 has been executed, then e_2 has been executed before e_1 and e_4 before e_3, and those occurrences of e_1 and e_3 have been executed before e_0.

Even if the grammar of correspondences does not explicitly require that facts F that occur before arrows in nested correspondences are events (or injective events), in practice they are because the only goal of nested correspondences is to order such events.

Our study of the JFK protocol, which can be found in the subdirectory `examples/pitype/jfk`, provides several interesting examples of nested correspondence assertions used to prove the correct ordering of messages of the protocol.

ProVerif proves nested correspondences essentially by proving several correspondences. For instance, in order to prove

$$\text{event}(e_0) \Longrightarrow \left(\text{event}(e_1) \Longrightarrow \text{event}(e_2) \right)$$

where the events e_0, e_1, e_2 may have arguments, ProVerif proves that each execution of e_0 is preceded by the execution of an instance of e_1, and that each execution of that instance of e_1 is preceded by the execution of an instance of e_2. For this reason, adding more arguments in intermediate events such as e_1 may facilitate the proof: it is easier to prove that e_2 has been executed when one has more information on which event e_1 has been executed.

A typical usage of nested correspondences is to order all messages in a protocol. One would like to prove a correspondence in the style:

$$\text{inj-event}(e_{end}) \Longrightarrow$$

$$\left(\text{inj-event}(e_n) \Longrightarrow \ldots \Longrightarrow \text{inj-event}(e_1) \Longrightarrow \text{inj-event}(e_0) \right)$$

where e_0 means that the first message of the protocol has been sent, e_i $(i > 0)$ means that the i-th message of the protocol has been received and the $(i + 1)$-th has been sent, and finally e_{end} means that the last message of the protocol has been received. (These events have at least as arguments the messages of the protocol.) However, the proof of such a correspondence typically fails in ProVerif: in order to prove the above correspondence, ProVerif tries to prove in particular that

$$\text{inj-event}(e_1) \Longrightarrow \text{inj-event}(e_0)$$

for some instances of e_1 and e_0, and that proof fails because the adversary can replay the first message of the protocol, so that a single execution of e_0 may correspond to several executions of e_1. One solution to this problem is to combine a ProVerif proof with a manual argument. One proves using ProVerif the weaker correspondence

$$\text{inj-event}(e_{end}) \Longrightarrow$$

$$\left(\text{inj-event}(e_n) \Longrightarrow \ldots \Longrightarrow \left(\text{inj-event}(e_1) \&\& \text{inj-event}(e_0) \right) \right)$$
which does not order \(e_0 \) and \(e_1 \). In order to prevent actual replays, the first message of the protocol typically contains a nonce, and one can then manually argue that event \(e_1 \) with that nonce cannot be executed before the nonce has been sent, so before \(e_0 \) has been executed with the same nonce. This argument allows us to order the events \(e_0 \) and \(e_1 \) and therefore prove the desired correspondence

\[
\text{inj-event}(e_{\text{end}}) \implies \\
(\text{inj-event}(e_n) \implies \ldots \implies (\text{inj-event}(e_1) \implies \text{inj-event}(e_0)))
\]

The event \(e_i \), which means that the \(i \)-th message of the protocol has been received and the \((i + 1)\)-th has been sent, must be placed after the input that receives the \(i \)-th message (when \(e_i \) is executed, the \(i \)-th message has been received before) and before the output that sends the \((i + 1)\)-th message (when the \((i + 1)\)-th message has been sent, we can prove that \(e_i \) has been executed). In practice, one generally places it just before the output that sends the \((i + 1)\)-th message, so that all components of this message have been computed and can be given as argument to the event. This technique is illustrated in Section 5.4.3.

4.3.2 Observational equivalence

The notion of indistinguishability is a powerful concept which allows us to reason about complex properties that cannot be expressed as reachability or correspondence properties. The notion of indistinguishability is generally named observational equivalence in the formal model. Intuitively, two processes \(P \) and \(Q \) are observationally equivalent, written \(P \approx Q \), when an active adversary cannot distinguish \(P \) from \(Q \). Formal definitions can be found in [AF01, BAF08]. Using this notion, one can for instance specify that a process \(P \) follows its specification \(Q \) by saying that \(P \approx Q \). ProVerif can prove some observational equivalences, but not all of them because their proof is complex. In this section, we present the queries that enable us to prove observational equivalences using ProVerif.

Strong secrecy

A first class of equivalences that ProVerif can prove is strong secrecy. Strong secrecy means that the attacker is unable to distinguish when the secret changes. In other words, the value of the secret should not affect the observable behavior of the protocol. Such a notion is useful to capture the adversary’s ability to learn partial information about the secret: when the adversary learns the first component of a pair, for instance, the whole pair is secret in the sense of reachability (the adversary cannot reconstruct the whole pair because it does not have the second component), but it is not secret in the sense of strong secrecy (the adversary can notice changes in the value of the pair, since it has its first component).

The concept is particularly important when the secret consists of known values. Consider for instance a process \(P \) that uses a boolean \(b \). The variable \(b \) can take two values, \(\text{true} \) or \(\text{false} \), which are both known to the adversary, so it is not secret in the sense of reachability. However, one may express that \(b \) is strongly secret by saying that \(P\{\text{true}/b\} \approx P\{\text{false}/b\} \): the adversary cannot determine whether \(b \) is \(\text{true} \) or \(\text{false} \). (\(\{\text{true}/b\} \) denotes the substitution that replaces \(b \) with \(\text{true} \).)

The strong secrecy of values \(x_1, \ldots, x_n \) is denoted by

\[
\text{noninterf } x_1, \ldots, x_n.
\]

When the process under consideration is \(P \), this query is true if and only if

\[
P\{M_1/x_1, \ldots, M_n/x_n\} \approx P\{M'_1/x_1, \ldots, M'_n/x_n\}
\]

for all terms \(M_1, \ldots, M_n, M'_1, \ldots, M'_n \). (\(\{M_1/x_1, \ldots, M_n/x_n\} \) denotes the substitution that replaces \(x_1 \) with \(M_1, \ldots, x_n \) with \(M_n \).) In other words, the adversary cannot distinguish changes in the values of \(x_1, \ldots, x_n \). The values \(x_1, \ldots, x_n \) must be free names of \(P \), declared by \text{free } x_i : t_i \text{ [private]} \). This point is particularly important: if \(x_1, \ldots, x_n \) do not occur in \(P \) or occur as bound names or variables in \(P \), the query \text{noninterf } x_1, \ldots, x_n \) holds trivially, because \(P\{M_1/x_1, \ldots, M_n/x_n\} = P\{M'_1/x_1, \ldots, M'_n/x_n\} \). To express secrecy of bound names or variables, one can use \text{choice}, described below. In the equivalence above, the adversary is permitted to replace the values \(x_1, \ldots, x_n \) with any term \(M_1, \ldots, M_n, M'_1, \ldots, M'_n \) it can build, that is, any term that can be built from public free names, public constructors, and fresh names created by the adversary. These terms cannot contain bound names (or private free names).
For instance, this strong secrecy query can be used to show the secrecy of a payload sent encrypted under a session key. Here is a trivial example of a such situation, in which we use a previously shared long-term key k as session key (file docs/ex_noninterf1.pv).

```plaintext
free c : channel.

(* Shared key encryption *)
type key.
fun senc(bitstring,key): bitstring.
reduc forall x: bitstring, y: key; sdec(senc(x,y),y) = x.

(* The shared key *)
free k:key [private].

(* Query *)
free secret: bitstring [private].
noninterf secret.

process (!out(c, senc(secret , k))) | 
  (!in(c, x:bitstring); let s = sdec(x, k) in 0)
```

One can also specify the set of terms in which $M_1, \ldots, M_n, M'_1, \ldots, M'_n$ are taken, using a variant of the noninterf query:

```
noninterf $x_1$ among $(M_1,1,\ldots,M_{1,k_1})$,
  \ldots,
  $x_n$ among $(M_n,1,\ldots,M_{n,k_n})$.
```

This query is true if and only if

$$P\{M_1/x_1, \ldots, M_n/x_n\} \approx P\{M'_1/x_1, \ldots, M'_n/x_n\}$$

for all terms $M_1,M'_1 \in \{M_1,1,\ldots,M_{1,k_1}\}, \ldots, M_n,M'_n \in \{M_n,1,\ldots,M_{n,k_n}\}$. Obviously, the terms $M_j,1,\ldots,M_{j,k_j}$ must have the same type as x_j. For instance, the secrecy of a boolean b could be expressed by noninterf b among (true, false).

Consider the following example (docs/ex_noninterf2.pv) in which the attacker is asked to distinguish between sessions which output $x \in \{n,h(n)\}$, where n is a private name.

```plaintext
free c : channel.

fun h(bitstring ): bitstring.
free x,n: bitstring [private].
noninterf x among (n, h(n)).

process out(c, x)
```

Note that free x,n: bitstring [private], is a convenient shorthand for

- free x: bitstring [private].
- free n: bitstring [private].

More complex examples can be found in subdirectory examples/pitype/noninterf.

Off-line guessing attacks

Protocols may rely upon weak secrets, that is, values with low entropy, such as human-memorable passwords. Protocols which rely upon weak secrets are often subject to off-line guessing attacks, whereby an attacker passively observes, or actively participates in, an execution of the protocol and then has the ability to verify if a guessed value is indeed the weak secret without further interaction with the protocol.
This makes it possible for the adversary to enumerate a dictionary of passwords, verify each of them, and find the correct one. The absence of off-line guessing attacks against a name \(n \) can be tested by the query:

\[
\text{weaksecret } n .
\]

where \(n \) is declared as a private free name: \texttt{free n : \texttt{t [private]}}. ProVerif then tries to prove that the adversary cannot distinguish a correct guess of the secret from an incorrect guess. This can be written formally as an observational equivalence

\[
P \mid \text{phase 1; out}(c, n) \approx P \mid \text{phase 1; new } n' : t; \text{out}(c, n')
\]

where \(P \) is the process under consideration and \(t \) is the type of \(n \). In phase 0, the adversary interacts with the protocol \(P \). In phase 1, the adversary can no longer interact with \(P \), but it receives either the correct password \(n \) or a fresh (incorrect) password \(n' \), and it should not be able to distinguish between these two situations.

As an example, we will consider the naïve voting protocol introduced by Delaune & Jacquemard [DJ04]. The protocol proceeds as follows. The voter \(V \) constructs her ballot by encrypting her vote \(v \) with the public key of the administrator. The ballot is then sent to the administrator whom is able to decrypt the message and record the voter’s vote, as modeled in the file docs/ex_weaksecret.pv shown below:

```plaintext
free c: channel.
type skey.
type pkey.
fun pk(skey): pkey.
fun aenc(bitstring, pkey): bitstring.
reduc forall m: bitstring, k: skey; adec(aenc(m, pk(k)), k) = m.
free v: bitstring [private].
weaksecret v.
let V(pkA: pkey) = out(c, aenc(v, pkA)).
let A(skA: skey) = in(c, x: bitstring); let v' = adec(x, skA) in 0.
process
new skA: skey;
let pkA = pk(skA) in
out(c, pkA);
! (V(pkA) | A(skA))
```

The voter’s vote is syntactically secret; however, if the adversary is assumed to know a small set of possible votes, then \(v \) can be deduced from the ballot. The off-line guessing attack can be thwarted by the use of a probabilistic public-key encryption scheme.

More examples regarding guessing attacks can be found in subdirectory \texttt{examples/pitype/weaksecr}.

Observational equivalence between processes that differ only by terms

The most general class of equivalences that ProVerif can prove are equivalences \(P \approx Q \) where the processes \(P \) and \(Q \) have the same structure and differ only in the choice of terms. These equivalences are written in ProVerif by a single “biprocess” that encodes both \(P \) and \(Q \). Such a biprocess uses the construct \texttt{choice}[\(M, M' \)] to represent the terms that differ between \(P \) and \(Q \): \(P \) uses the first component of the choice, \(M \), while \(Q \) uses the second one, \(M' \). For example, the secret ballot (privacy) property of an electronic voting protocol can be expressed as:

\[
P(sk_A, v_1) \mid P(sk_B, v_2) \approx P(sk_A, v_2) \mid P(sk_B, v_1)
\]

(4.1)
where \(P \) is the voter process, \(sk_A \) (respectively \(sk_B \)) is the voter’s secret key and \(v_1 \) (respectively \(v_2 \)) is the candidate for whom the voter wishes to vote for: one cannot distinguish the situation in which \(A \) votes for \(v_1 \) and \(B \) votes from the situation in which \(A \) votes for \(v_2 \) and \(B \) votes for \(v_1 \). (The simpler equivalence \(P(sk_A, v_1) \approx P(sk_A, v_2) \) typically does not hold because, if \(A \) is the only voter, one can know for whom she voted from the final result of the election.) The pair of processes (4.1) can be expressed as a single biprocess as follows:

\[
P(sk_A, \text{choice}[v_1, v_2]) | P(sk_B, \text{choice}[v_2, v_1])
\]

Accordingly, we extend our grammar for terms to include \(\text{choice}[M, N] \).

Unlike the previous security properties we have studied, there is no need to explicitly tell ProVerif that a script aims at verifying an observational equivalence, since this can be inferred from the occurrence of \(\text{choice}[M, N] \). It should be noted that the analysis of observational equivalence is incompatible with other security properties, that is, scripts in which \(\text{choice}[M, N] \) appears cannot contain \text{query}, \text{noninterf}, nor \text{weaksecret}. (For this reason, you may have to write several distinct input files in order to prove several properties of the same protocol. You can use a preprocessor such as \text{m4} or \text{cpp} to generate all these files from a single master file.)

Example: Decisional Diffie-Hellman assumption The decisional Diffie-Hellman (DDH) assumption states that, given a cyclic group \(G \) of prime order \(q \) with generator \(g \), \((g^a, g^b, g^{ab})\) is computationally indistinguishable from \((g^a, g^c, g^c)\), where \(a, b, c \) are random elements from \(\mathbb{Z}_q^* \). A formal counterpart of this property can be expressed as an equivalence using the ProVerif script below (file \text{docs/dh-fs.pv}).

```plaintext
free d : channel.
type G.
type exponent.
const g : G [data].
fun exp (G, exponent) : G.
equation for all x : exponent, y : exponent ; exp(exp(g, x), y) = exp(exp(g, y), x).

process
  new a : exponent; new b : exponent; new c : exponent:
  out(d, (exp(g, a), exp(g, b), choice[exp(exp(g, a), b), exp(g, c)]))

ProVerif succeeds in proving this equivalence. Intuitively, this result shows that our model of the Diffie-Hellman key agreement is stronger than the Decisional Diffie-Hellman assumption.

Observe that the biprocess \text{out}(d,(exp(g,a),exp(g,b),choice[exp(exp(g,a),b),exp(g,c)])) \text{is equivalent to}

\[
\text{out}(\text{choice}[d,d],(\text{choice}[exp(g,a),exp(g,a)]), \text{choice}[exp(g,b),exp(g,b)]),
\text{choice}[exp(exp(g,a),b),exp(g,c)])
\]

That is, \text{choice}[M, M] may be abbreviated as \( M \); it follows immediately that the \text{choice} operator is only needed to model the terms that are different in the pair of processes.

**Real-or-random secrecy**  In the computational model, one generally expresses the secrecy of a value \( x \) by saying that \( x \) is indistinguishable from a fresh random value. One can express a similar idea in the formal model using observational equivalence. For instance, this notion can be used for proving secrecy of a session key \( k \), as in the following variant of the fixed handshake protocol of Chapter 3 (file \text{docs/ex_handshake_RoR.pv}).

```plaintext
free c : channel.
let clientA (pkA : pkey, skA : skey, pkB : spkey) =
 out(c, pkA);
```
\begin{verbatim}
let \( y = \text{adec}(x, \text{sk}_A) \) in
let \((=\text{pk}_A,=\text{pk}_B, k: \text{key}) = \text{checksign}(y, \text{pk}_B) \) in
new random : key;
out\((c, \text{choice}[k, \text{random}])\).

let \( \text{serverB}(\text{pk}_B: \text{spkey}, \text{sk}_B: \text{sskey}, \text{pk}_A: \text{pkey}) = \)
\( \text{in}(c, \text{pk}_X: \text{pkey}); \)
new k : key;
out\((c, \text{aenc}(\text{sign}((\text{pk}_X, \text{pk}_B, k), \text{sk}_B), \text{pk}_X))\).

\text{process}
new \text{sk}_A : \text{skkey};
new \text{sk}_B : \text{sskey};
let \text{pk}_A = \text{pk}(\text{sk}_A) \text{ in } \text{out}(c, \text{pk}_A);
let \text{pk}_B = \text{spk}(\text{sk}_B) \text{ in } \text{out}(c, \text{pk}_B);
( (\text{!clientA}(\text{pk}_A, \text{sk}_A, \text{pk}_B)) | (\text{!serverB}(\text{pk}_B, \text{sk}_B, \text{pk}_A)) )
\end{verbatim}

In Line 9, one outputs to the adversary either the real key \(k\) or a random key \(\text{random}\), and the equivalence holds when the adversary cannot distinguish these two situations. As ProVerif finds, the equivalence does not hold in this example, because of a replay attack: the adversary can replay the message from the server \(B\) to the client \(A\), which leads several sessions of the client to have the same key \(k\). The adversary can distinguish this situation from a situation in which the key is a fresh random number \(\text{random}\) generated at each session of the client. Another example can be found in Section 5.4.2.

When the observational equivalence proof fails on the biprocess given by the user, ProVerif tries to simplify that biprocess by transforming as far as possible tests that occur in subprocesses into tests done inside terms, which increases the chances of success of the proof. The proof is then tried on the simplified process(es). This simplification of biprocesses can be turned off by the setting \texttt{set simplifyProcess = false}. (See Section 6.2.2 for details on this setting.) More complex examples using \texttt{choice} can be found in subdirectory \texttt{examples/pitype/choice}.

Remarks The absence of off-line guessing attacks can also be expressed using \texttt{choice}:

\[ P \mid \text{phase} 1; \text{new } n': t; \text{out}(c, \text{choice}[n, n']) \]

This is how ProVerif handles guessing attacks internally, but using \texttt{weaKsecret} is generally more convenient in practice. (For instance, one can query for the secrecy of several weak secrets in the same ProVerif script.)

Strong secrecy \texttt{noninterf} \(x_1, \ldots, x_n\) can also be formalized using \texttt{choice}, by inputting two messages \(x'_i, x''_i\) for each \(i \leq n\) and defining \(x_i\) by \texttt{let } \(x_i = \text{choice}[x'_i, x''_i]\) before starting the protocol itself (possibly in an earlier phase than the protocol). However, the query \texttt{noninterf} is typically much more efficient than \texttt{choice}. On the other hand, in the presence of equations that can be applied to the secrets, \texttt{noninterf} commonly leads to false attacks. So we recommend trying with \texttt{noninterf} for properties that can be expressed with it, especially when there is no equation, and using \texttt{choice} in the presence of equations or for properties that cannot be expressed using \texttt{noninterf}.

Strong secrecy with \texttt{among} can also be encoded using \texttt{choice}. That may require many equivalences when the sets are large, even if some examples are very easy to encode. For instance, the query \texttt{noninterf} \(b\) \texttt{among} \((\text{true, false})\) can also be encoded as \texttt{let } \(b = \text{choice}[\text{true, false}]\) \text{ in } \(P\) where \(P\) is the protocol under consideration.

Static equivalence \([AF01]\) is an equivalence between frames, that is, substitutions with hidden names

\[ \phi = \text{new } n_1 : t_1; \ldots \text{ new } n_k : t_k; \{M_1/x_1, \ldots, M_l/x_1\} \]
\[ \phi' = \text{new } n'_1 : t'_1; \ldots \text{ new } n'_{k'} : t'_{k'}; \{M'_1/x_1, \ldots, M'_{l'}/x_1\} \]

Static equivalence corresponds to the case in which the adversary receives either the messages \(M_1, \ldots, M_l\) or \(M'_1, \ldots, M'_{l'}\), and should not be able to distinguish between these two situations; static equivalence can be expressed by the observational equivalence

\[\phi = \phi'\]
4.3. FURTHER SECURITY PROPERTIES

new n_1 : t_1 ; ... new n_k : t_k ; out ( c , ( M_1 ,..., M_l ) )
≈
new n'_1 : t'_1 ; ... new n'_k : t'_k ; out ( c , ( M'_1 ,..., M'_l ) )

which can always be written using choice:

new n_1 : t_1 ; ... new n_k : t_k ; new n'_1 : t'_1 ; ... new n'_k : t'_k ;
out ( c , ( choice [ M_1 , M'_1 ] ,..., choice [ M_l , M'_l ] ) )

The Diffie-Hellman example above is an example of static equivalence.

Internally, ProVerif proves a property much stronger than observational equivalence of P and Q. In fact, it shows that for each reachable test, the same branch of the test is taken both in P and in Q; for each reachable destructor application, the destructor application either succeeds both in P and Q or fails both in P and Q; for each reachable configuration with an input and an output on private channels, the channels are equal in P and in Q, or different in P and in Q. In other words, it shows that each reduction step is executed in the same way in P and Q. Because this property is stronger than observational equivalence, we may have “false attacks” in which this property is wrong but observational equivalence in fact holds. When ProVerif does not manage to prove observational equivalence, it tries to reconstruct an attack against the stronger property, that is, it provides a trace of P and Q that arrives at a point at which P and Q reduce in a different way. This trace explains why the proof fails, and may also enable the user to understand if observational equivalence really does not hold, but it does not provide a proof that observational equivalence does not hold. That is why ProVerif never concludes “RESULT [Query] is false” for observational equivalences; when the proof fails, it just concludes “RESULT [Query] cannot be proved”.

Observational equivalence between two processes

ProVerif can also prove equivalence P ≈ Q between two processes P and Q presented separately, using the following command (instead of process P)

 equivalence P Q

where P and Q are processes that do not contain choice. ProVerif will in fact try to merge the processes P and Q into a biprocess and then prove equivalence of this biprocess. Note that ProVerif is not always capable of merging two processes into a biprocess: the structure of the two processes must be fairly similar. Here is a toy example:

1 type key.
2 type macs.
3
4 fun mac ( bitstring , key ) : macs.
5
6 free c : channel.
7
8 equivalence
9  ! new k : key ; ! new a : bitstring ; out ( c , mac ( a , k ))
10 ! new k : key ; new a : bitstring ; out ( c , mac ( a , k ))

The difference between the two processes is that the first process can use the same key k for sending several MACs, while the second one sends one MAC for each key k. Even though the structure of the two processes is slightly different (there is an additional replication in the first process), ProVerif manages to merge these two processes into a single biprocess:

1 !
2 new k_39 : key;
3 !
4 new a_40 : bitstring;
5 new k_41 : key;
6 new a_42 : bitstring;
7 out ( c , choice [ mac ( a_40 , k_39 ) , mac ( a_42 , k_41 ) ] )
and to prove that the two processes are observationally equivalent.
Chapter 5

Needham-Schroeder public key protocol: Case Study

The Needham-Schroeder public key protocol [NS78] is intended to provide mutual authentication of two principals Alice \( A \) and Bob \( B \). Although it is not stated in the original description, the protocol may also provide a secret session key shared between the participants. In addition to the two participants, we assume the existence of a trusted key server \( S \).

The protocol proceeds as follows. Alice contacts the key server \( S \) and requests Bob’s public key. The key server responds with the key \( \text{pk} (\text{sk}_B) \) paired with Bob’s identity, signed using his private signing key for the purposes of authentication. Alice proceeds by generating a nonce \( N_a \), pairs it with her identity \( A \), and sends the message encrypted with Bob’s public key. On receipt, Bob decrypts the message to recover \( N_a \) and the identity of his interlocutor \( A \). Bob then establishes Alice’s public key \( \text{pk}(\text{sk}_A) \) by requesting it to the key server \( S \). Bob then generates his nonce \( N_b \) and sends the message \((N_a, N_b)\) encrypted for Alice. Finally, Alice replies with the message \( \text{aenc}(N_b, \text{pk}(\text{sk}_B)) \). The rationale behind the protocol is that, since only Bob can recover \( N_a \), only he can send message 6; and hence authentication of Bob should hold. Similarly, only Alice should be able to recover \( N_b \); and hence authentication of Alice is expected on receipt of message 7. Moreover, it follows that Alice and Bob have established the shared secrets \( N_a \) and \( N_b \) which can subsequently be used as session keys. The protocol can be summarized by the following narration:

\[
\begin{align*}
(1) & \quad A \rightarrow S : (A, B) \\
(2) & \quad S \rightarrow A : \text{sign}((B, \text{pk}(\text{sk}_B)), \text{sk}_S) \\
(3) & \quad A \rightarrow B : \text{aenc}((N_a, A), \text{pk}(\text{sk}_B)) \\
(4) & \quad B \rightarrow S : (B, A) \\
(5) & \quad S \rightarrow B : \text{sign}((A, \text{pk}(\text{sk}_A)), \text{sk}_S) \\
(6) & \quad B \rightarrow A : \text{aenc}((N_a, N_b), \text{pk}(\text{sk}_A)) \\
(7) & \quad A \rightarrow B : \text{aenc}(N_b, \text{pk}(\text{sk}_B))
\end{align*}
\]

Informally, the protocol is expected to satisfy the following properties:

1. Authentication of \( A \) to \( B \): if \( B \) reaches the end of the protocol and he believes he has done so with \( A \), then \( A \) has engaged in a session with \( B \).
2. Authentication of \( B \) to \( A \): similarly to the above.
3. Secrecy for \( A \): if \( A \) reaches the end of the protocol with \( B \), then the nonces \( N_a \) and \( N_b \) that \( A \) has are secret; in particular, they are suitable for use as session keys for preserving the secrecy of an arbitrary term \( M \) in the symmetric encryption \( \text{senc}(M, K) \) where \( K \in \{N_a, N_b\} \).
4. Secrecy for \( B \): similarly.

However, nearly two decades after the protocol’s inception, Gavin Lowe discovered a man-in-the-middle attack [Low96]. An adversary \( I \) engages Alice in a legitimate session of the protocol; and in parallel, the adversary is able to impersonate Alice in a session with Bob. In practice, one may like to consider the
adversary to be a malicious retailer $I$ whom Alice is willing to communicate with (presumably without the knowledge that the retailer is corrupt), and Bob is an honest institution (for example, a bank) whom Alice conducts legitimate business with. In this scenario, the honest bank $B$ is duped by the malicious retailer $I$ who is pertaining to be Alice. The protocol narration below describes the attack (with the omission of key distribution).

\[
\begin{align*}
A & \rightarrow I : \text{aenc}((Na,A), \text{pk}(\text{sk}I)) \\
I & \rightarrow B : \text{aenc}((Na,A), \text{pk}(\text{sk}B)) \\
B & \rightarrow A : \text{aenc}((Na,Nb), \text{pk}(\text{sk}A)) \\
A & \rightarrow I : \text{aenc}(Nb, \text{pk}(\text{sk}I)) \\
I & \rightarrow B : \text{aenc}(Nb, \text{pk}(\text{sk}B))
\end{align*}
\]

Lowe fixes the protocol by the inclusion of Bob’s identity in message 6; that is,

\[(6') B \rightarrow A : \text{aenc}((Na,Nb,B), \text{pk}(\text{sk}A))\]

This correction allows Alice to verify whom she is running the protocol with and prevents the attack. In the remainder of this chapter, we demonstrate how the Needham-Schroeder public key protocol can be analyzed using ProVerif with various degrees of complexity.

### 5.1 Simplified Needham-Schroeder protocol

We begin our study with the investigation of a simplistic variant which allows us to concentrate on the modeling process rather than the complexities of the protocol itself. Accordingly, we consider the essence of the protocol which is specified as follows:

\[
\begin{align*}
A & \rightarrow B : \text{aenc}((Na,\text{pk}(\text{sk}A)), \text{pk}(\text{sk}B)) \\
B & \rightarrow A : \text{aenc}((Na,Nb), \text{pk}(\text{sk}A)) \\
A & \rightarrow B : \text{aenc}(Nb, \text{pk}(\text{sk}B))
\end{align*}
\]

In this formalization, the role of the trusted key server is omitted and hence we assume that participants Alice and Bob are in possession of the necessary public keys prior to the execution of the protocol. In addition, Alice’s identity is modeled using her public key.

#### 5.1.1 Basic encoding

The declarations are standard, they specify a public channel $c$ and constructors/destructors required to capture cryptographic primitives in the now familiar fashion:

```plaintext
1 free c : channel.
2
3 (* Public key encryption *)
4 type pkey.
5 type skey.
6
7 fun pk(skey) : pkey.
8 fun aenc(bitstring, pkey) : bitstring.
9 reduc forall x : bitstring, y : skey; adec(aenc(x, pk(y)), y) = x.
10
11 (* Signatures *)
12 type spkey.
13 type sskey.
14
15 fun spk(sskey) : spkey.
16 fun sign(bitstring, sskey) : bitstring.
17 reduc forall x : bitstring, y : sskey; getmess(sign(x, y)) = x.
18 reduc forall x : bitstring, y : sskey; checksign(sign(x, y), spk(y)) = x.
```
5.1. SIMPLIFIED NEEDHAM-SCHROEDER PROTOCOL

(* Shared key encryption *)


reduc forall x, y: :bitstring; sdec(senc(x,y), y) = x.

Process macros for A and B can now be declared and the main process can also be specified:

let processA(pkB: pkey, skA: skey) =
  in(c, pkX: pkey);
  new Na: :bitstring;
  out(c, aenc((Na, pk(skA)), pkX));
  in(c, m: :bitstring);
  let (=Na, NX: :bitstring) = adec(m, skA) in
  out(c, aenc(NX, pkX)).

let processB(pkA: pkey, skB: skey) =
  in(c, m: :bitstring);
  let (NY: :bitstring, pkY: pkey) = adec(m, skB) in
  new Nb: :bitstring;
  out(c, aenc((NY, Nb), pkY));
  in(c, m3: :bitstring);
  if Nb = adec(m3, skB) then 0.

process
  new skA: skey; let pkA = pk(skA) in out(c, pkA);
  new skB: skey; let pkB = pk(skB) in out(c, pkB);
  ( (!processA(pkB, skA)) | (!processB(pkA, skB)) )

The main process begins by constructing the private keys skA and skB for principals A and B respectively. The public parts pk(skA) and pk(skB) are then output on the public communication channel c, ensuring they are available to the adversary. (Observe that this is done using the handles pkA and pkB for convenience.) An unbounded number of instances of processA and processB are then instantiated (with the relevant parameters), representing A and B’s willingness to participate in arbitrarily many sessions of the protocol.

We assume that Alice is willing to run the protocol with any other principal; the choice of her interlocutor will be made by the environment. This is captured by modeling the first input in(c, pkX: pkey) to processA as the interlocutor’s public key pkX. The actual protocol then commences with Alice selecting her nonce Na, which she pairs with her identity pkA = pk(skA) and outputs the message encrypted with her interlocutor’s public key pkX. Meanwhile, Bob awaits an input from his initiator; on receipt, Bob decrypts the message to recover his initiator’s nonce NY and identity pkY. Bob then generates his nonce Nb and sends the message (NY,Nb) encrypted for the initiator using the key pkY. Next, if Alice believes she is talking to her interlocutor, that is, if the ciphertext she receives contains her nonce Na, then she replies with aenc(Nb, pk(skB)). (Recall that only the interlocutor who has the secret key corresponding to the public key part pkX should have been able to recover Na and hence if the ciphertext contains her nonce, then she believes authentication of her interlocutor holds.) Finally, if the ciphertext received by Bob contains his nonce Nb, then he believes that he has successfully completed the protocol with his initiator.

5.1.2 Security properties

Recall that the primary objective of the protocol is mutual authentication of the principals Alice and Bob. Accordingly, when A reaches the end of the protocol with the belief that she has done so with B, then B has indeed engaged in a session with A; and vice-versa for B. We declare the events:

- event beginAparam(pkey), which is used by Bob to record the belief that the initiator whose public key is supplied as a parameter has commenced a run of the protocol with him.
• **event** `endAparam(pkey)`, which means that Alice believes she has successfully completed the protocol with Bob. This event is executed only when Alice believes she runs the protocol with Bob, that is, when `pkX = pkB`. Alice supplies her public key `pk(skA)` as the parameter.

• **event** `beginBparam(pkey)`, which denotes Alice’s intention to initiate the protocol with an interlocutor whose public key is supplied as a parameter.

• **event** `endBparam(pkey)`, which records Bob’s belief that he has completed the protocol with Alice. He supplies his public key `pk(skB)` as the parameter.

Intuitively, if Alice believes she has completed the protocol with Bob and hence executes the event `endAparam(pk(skA))`, then there should have been an earlier occurrence of the event `beginAparam(pk(skA))`, indicating that Bob started a session with Alice; moreover, the relationship should be injective. A similar property should hold for Bob.

In addition, we wish to test if, at the end of the protocol, the nonces `Na` and `Nb` are secret. These nonces are names created by `new` or variables such as `NX` and `NY`, while the standard secrecy queries of ProVerif deal with the secrecy of private free names. To solve this problem, we can use the following general technique: instead of directly testing the secrecy of the nonces, we use them as session keys in order to encrypt some free name and test the secrecy of that free name. For instance, in the process for Alice, we output `senc(secretANa,Na)` and we test the secrecy of `secretANa`: `secretANa` is secret if and only if the nonce `Na` that Alice has is secret. Similarly, we output `senc(secretANb,NX)` and we test the secrecy of `secretANb`: `secretANb` is secret if and only if `NX` (that is, the nonce `Nb` that Alice has) is secret. We proceed symmetrically for Bob using `secretBNa` and `secretBNb`.

Observe that the use of four names `secretANa`, `secretANb`, `secretBNa`, `secretBNb` for secrecy queries allows us to analyze the precise point of failure; that is, we can study secrecy for Alice and secrecy for Bob. Moreover, we can analyze both nonces `Na` and `Nb` independently for each of Alice and Bob.

The corresponding ProVerif code annotated with events and additional code to model secrecy, along with the relevant queries, is presented as follows (file `docs/NeedhamSchroederPK-var1.pv`):

```proverif
(* Authentication queries *)
event beginBparam (pkey).
event endBparam (pkey).
event beginAparam (pkey).
event endAparam (pkey).

query x : pkey; inj-event (endBparam (x)) == inj-event (beginBparam (x)).
query x : pkey; inj-event (endAparam (x)) == inj-event (beginAparam (x)).

(* Secrecy queries *)
free secretANa, secretANb, secretBNa, secretBNb: bitstring [private].
query attacker (secretANa);
attacker (secretANb);
attacker (secretBNa);
attacker (secretBNb).

(* Alice *)
let processA (pkB: pkey, skA: skey) =
in(c, pkX: pkey);
event beginBparam (pkX);
new Na: bitstring;
out(c, aenc ((Na, pk(skA)), pkX));
in(c, m: bitstring);
let (=Na, NX: bitstring) = adec (m, skA) in
out(c, aenc (NX, pkX));
if pkX = pkB then
event endAparam (pk(skA));
```
5.1. SIMPLIFIED NEEDHAM-SCHROEDER PROTOCOL

```plaintext
out(c, senc(secretANa, Na));
out(c, senc(secretANb, NX)).

(* Bob *)
let processB(pkA: pkey, skB: skey) =
in(c, m: bitstring);
let (NY: bitstring, pkY: pkey) = adec(m, skB) in
event beginAparam(pkY);
new Nb: bitstring;
out(c, aenc((NY, Nb), pkY));
in(c, m3: bitstring);
if Nb = adec(m3, skB) then
if pkY = pkA then
event endBparam(pk(skB));
out(c, senc(secretBNa, NY));
out(c, senc(secretBNb, Nb)).

(* Main *)
process
new skA: skey; let pkA = pk(skA) in out(c, pkA);
new skB: skey; let pkB = pk(skB) in out(c, pkB);
((!processA(pkB, skA)) | (!processB(pkA, skB)))
```

Analyzing the simplified Needham-Schroeder protocol. Executing the Needham-Schroeder protocol with the command `./proverif docs/NeedhamSchroederPK-var1.pv | grep "RES"` produces the output:

```
RESULT not attacker(secretANa[]) is true.
RESULT not attacker(secretANb[]) is true.
RESULT not attacker(secretBNa[]) is false.
RESULT not attacker(secretBNb[]) is false.
RESULT inj−event(beginAparam(x,569)) ==> inj−event(beginAparam(x,569)) is true.
RESULT inj−event(beginBparam(x,999)) ==> inj−event(beginBparam(x,999)) is false.
RESULT (even event(beginBparam(x,1486)) ==> event(beginBparam(x,1486)) is false.)
```

As we would expect, this means that the authentication of B to A and secrecy for A hold; whereas authentication of A to B and secrecy for B are violated. Notice how the use of four independent queries for secrecy makes the task of evaluating the output easier. In addition, we learn

```
RESULT (even event(beginBparam(x,1486)) ==> event(beginBparam(x,1486)) is false.)
```

which means that even the non-injective authentication of A to B is false; that is, Bob may end the protocol thinking he talks to Alice while Alice has never run the protocol with Bob. For the query attacker(secretBNa[]), ProVerif returns the following trace of an attack:

```
1 new skA creating skA_411 at {1}
2 out(c, pk(skA_411)) at {3}
3 new skB creating skB_412 at {4}
4 out(c, pk(skB_412)) at {6}
5 in(c, pk(a)) at {8} in copy a_408
6 event(beginBparam(pk(a))) at {9} in copy a_408
7 new Na creating Na_410 at {10} in copy a_408
8 out(c, aenc((Na_410,pk(skA_411)),pk(a))) at {11} in copy a_408
9 in(c, aenc((Na_410,pk(skA_411)),pk(skB_412))) at {20} in copy a_409
10 event(beginAparam(pk(skA_411))) at {22} in copy a_409
11 new Nb creating Nb_413 at {23} in copy a_409
12 out(c, aenc((Na_410,Nb_413),pk(skA_411))) at {24} in copy a_409
13 in(c, aenc((Na_410,Nb_413),pk(skA_411))) at {12} in copy a_408
```
This trace corresponds to Lowe’s attack. The first two new and outputs correspond to the creation of the secret keys and outputs of the public keys of A and B in the main process. Next, processA starts, inputting the public key pk(a) of its interlocutor: a has been generated by the adversary, so this interlocutor is dishonest. A then sends the first message of the protocol aenc((Na,410,pk(skA,411)),pk(a)) (Line 8 of the trace). This message is received by B after having been decrypted and reencrypted under pkB by the adversary. It looks like a message for a session between A and B, B replies with aenc((Na,410,Nb,413),pk(skA,411)) which is then received by A. A replies with aenc(Nb,413,pk(a)). This message is again received by B after having been decrypted and reencrypted under pkB by the adversary. B has then apparently concluded a session with A, so it sends senc(secretBNa,Na,410). The adversary has obtained Na,410 by decrypting the message aenc((Na,410,pk(skA,411)),pk(a)) (sent at Line 8 of the trace), so it can compute secretBNa, thus breaking secrecy. The traces found for the other queries are similar.

5.2 Full Needham-Schroeder protocol

In this section, we will present a model of the full protocol and will demonstrate the use of some ProVerif features. (A more generic model is presented in Section 5.3.) In this formalization, we preserve the types of the Needham-Schroeder protocol more closely. In particular, we model the type nonce (rather than bitstring) and we introduce the type host for participants identities. Accordingly, we make use of type conversion where necessary. Since the modeling process should now be familiar, we present the complete encoding, which can be found in the file docs/NeedhamSchroederPK-var2.pv, and then discuss particular aspects.
fun nonce_to_bitstring(nonce): bitstring [data, typeConverter].

(* Two honest host names A and B *)
type host.
free A, B: host.

(* Key table *)
table keys(host, pkey).

(* Authentication queries *)
event beginBparam(host).
event endBparam(host).
event beginAparam(host).
event endAparam(host).

query x: host; inj-event(endBparam(x)) ===> inj-event(beginBparam(x)).
query x: host; inj-event(endAparam(x)) ===> inj-event(beginAparam(x)).

(* Secrecy queries *)
free secretANa, secretANb, secretBNa, secretBNb: bitstring [private].

query attacker(secretANa);
attacker(secretANb);
attacker(secretBNa);
attacker(secretBNb).

(* Alice *)
let processA(pkS: spkey, skA: skey, skB: skey) =
in(c, hostX: host);
event beginBparam(hostX);
out(c, (A, hostX));
in(c, ms: bitstring);
let (pkX: pkey, =hostX) = checksign(ms, pkS) in
new Na: nonce;
out(c, aenc((Na, A), pkX));
in(c, m: bitstring);
let (=Na, NX: nonce) = adec(m, skA) in
out(c, aenc(nonce_to_bitstring(NX), pkX));
if hostX = B then
event endAparam(A);
out(c, senc(secretANa, Na));
out(c, senc(secretANb, NX)).

(* Bob *)
let processB(pkS: spkey, skA: skey, skB: skey) =
in(c, m: bitstring);
let (NY: nonce, hostY: host) = adec(m, skB) in
event beginAparam(hostY);
out(c, (B, hostY));
in(c, ms: bitstring);
let (pkY: pkey, =hostY) = checksign(ms, pkS) in
new Nb: nonce;
out(c, aenc((NY, Nb), pkY));
in(c, m3: bitstring);
if nonce_to_bitstring(Nb) = adec(m3, skB) then
if hostY = A then
  event endBparam(B);
  out(c, senc(secretBNa, NY));
  out(c, senc(secretBNb, Nb)).
(* Trusted key server *)
let processS(skS: sskey) =
in(c, (a: host, b: host));
get keys(=b, sb) in
out(c, sign((sb, b), skS)).

(* Key registration *)
let processK =
in(c, (h: host, k: pkey));
if h <> A && h <> B then insert keys(h, k).

(* Main *)
process
new skA: skey; let pkA = pk(skA) in out(c, pkA); insert keys(A, pkA);
new skB: skey; let pkB = pk(skB) in out(c, pkB); insert keys(B, pkB);
new skS: sskey; let pkS = spk(skS) in out(c, pkS);
(!processA(pkS, skA, skB)) | (!processB(pkS, skA, skB)) |
(!processS(skS)) | (!processK)

This process uses a key table in order to relate host names and their public keys. The key table is declared by table keys(host, pkey). Keys are inserted in the key table in the main process (for the honest hosts A and B, by insert keys(A, pkA) and insert keys(B, pkB)) and in a key registration process processK for dishonest hosts. The key server processS looks up the key corresponding to host b by get keys(=b, sb) in order to build the corresponding certificate. Since Alice is willing to run the protocol with any other participant and she will request her interlocutor’s public key from the key server, we must permit the adversary to register keys with the trusted key server (that is, insert keys into the key table). This behavior is captured by the key registration process processK. Observe that the conditional if h <> A && h <> B then prevents the adversary from changing the keys belonging to Alice and Bob. (Recall that when several records are matched by a get query, then one possibility is chosen, but ProVerif considers all possibilities when reasoning; without the conditional, the adversary can therefore effectively change the keys belonging to Alice and Bob.)

Evaluating security properties of the Needham-Schroeder protocol. Once again ProVerif is able to conclude that authentication of B to A and secrecy for A hold, whereas authentication of A to B and secrecy for B are violated. We omit analyzing the output produced by ProVerif and leave this as an exercise for the reader.

5.3 Generalized Needham-Schroeder protocol

In the previous section, we considered an undesirable restriction on the participants; namely that the initiator was played by Alice using the public key pk(skA) and the responder played by Bob using the public key pk(skB). In this section, we generalize our encoding. Additionally, we also model authentication as full agreement, that is, agreement on all protocol parameters. The reader will also notice that we use encrypt and decrypt instead of aenc and adec, and sencrypt and sdecrypt instead of senc and sdec. The following script can be found in the file docs/NeedhamSchroederPK-var3.pv.
(* Loops if types are ignored *)
set ignoreTypes = false.
free c: channel.
5.3. GENERALIZED NEEDHAM-SCHROEDER PROTOCOL

6  type host.
7  type nonce.
8  type pkey.
9  type skey.
10 type spkey.
11 type sskey.
12
13 fun nonce_to_bitstring(nonce): bitstring [data.typeConverter].
14
(* Public key encryption *)
16  fun pk(skey): pkey.
17  fun encrypt(bitstring, pkey): bitstring.
18  reduc forall x: bitstring, y: skey; decrypt(encrypt(x,pk(y)),y) = x.
19
(* Signatures *)
21  fun spk(sskey): spkey.
22  fun sign(bitstring, sskey): bitstring.
23  reduc forall m: bitstring, k: sskey; getmess(sign(m,k)) = m.
24  reduc forall m: bitstring, k: sskey; checksign(sign(m,k), spk(k)) = m.
25
(* Shared key encryption *)
27  fun sencrypt(bitstring, nonce): bitstring.
28  reduc forall x: bitstring, y: nonce; sdecrypt(sencrypt(x,y),y) = x.
29
(* Secrecy assumptions *)
31  not attacker(new skA).
32  not attacker(new skB).
33  not attacker(new skS).
34
(* 2 honest host names A and B *)
36  free A, B: host.
37
  table keys(host, pkey).
39
(* Queries *)
41  free secretANa, secretANb, secretBNa, secretBNb: bitstring [private].
42  query attacker(secretANa);
43       attacker(secretANb);
44       attacker(secretBNa);
45       attacker(secretBNb).
46
  event beginBparam(host, host).
48  event endBparam(host, host).
49  event beginAparam(host, host).
50  event endAparam(host, host).
51  event beginBfull(host, host, pkey, pkey, nonce, nonce).
52  event endBfull(host, host, pkey, pkey, nonce, nonce).
53  event beginAfull(host, host, pkey, pkey, nonce, nonce).
54  event endAfull(host, host, pkey, pkey, nonce, nonce).
55
  query x: host, y: host;
56    inj−event(endBparam(x,y)) ⊢ inj−event(beginBparam(x,y)).
58
  query x1: host, x2: host, x3: pkey, x4: pkey, x5: nonce, x6: nonce;
59    inj−event(endBfull(x1,x2,x3,x4,x5,x6))
CHAPTER 5. NEEDHAM-SCHROEDER: CASE STUDY

58

\[ \Rightarrow \text{inj-event} (\text{beginBfull}(x_1, x_2, x_3, x_4, x_5, x_6)). \]

61

query x: host, y: host;
62 \text{inj-event}(\text{endAparam}(x, y)) \Rightarrow \text{inj-event}(\text{beginAparam}(x, y)).
63

66

query x_1: host, x_2: host, x_3: pkey, x_4: pkey, x_5: nonce, x_6: nonce;
67 \text{inj-event}(\text{endAfull}(x_1, x_2, x_3, x_4, x_5, x_6))
68 \Rightarrow \text{inj-event}(\text{beginAfull}(x_1, x_2, x_3, x_4, x_5, x_6)).
69

70 (* Role of the initiator with identity xA and secret key skxA *)
71 let processInitiator(pkS: spkey, skA: skey, skB: skey) =
72 (* The attacker starts the initiator by choosing identity xA, and its interlocutor xB0. We check that xA is honest (i.e. is A or B) and get its corresponding key. *)
73 in(c, (xA: host, hostX: host));
74 if xA = A || xA = B then
75 let skxA = if xA = A then skA else skB in
76 let pkxA = pk(skxA) in
77 (* Real start of the role *)
78 event beginBparam(xA, hostX);
79 (* Message 1: Get the public key certificate for the other host *)
80 out(c, (xA, hostX));
81 (* Message 2 *)
82 in(c, ms: bitstring);
83 let (pkX: pkey, =hostX) = checksign(ms, pkS) in
84 (* Message 3 *)
85 new Na: nonce;
86 out(c, encrypt((Na, xA), pkX));
87 (* Message 6 *)
88 in(c, m: bitstring);
89 let (=Na, NX2: nonce) = decrypt(m, skxA) in
90 (* Message 7 *)
91 out(c, encrypt(nonceto_bitstring(NX2), pkX));
92 (* OK *)
93 if hostX = B || hostX = A then
94 event endAparam(xA, hostX);
95 event endAfull(xA, hostX, pkX, pkxA, Na, NX2);
96 out(c, sencrypt(secretANa, Na));
97 out(c, sencrypt(secretANb, NX2)).
98
99 (* Role of the responder with identity xB and secret key skxB *)
100 let processResponder(pkS: spkey, skA: skey, skB: skey) =
101 (* The attacker starts the responder by choosing identity xB. We check that xB is honest (i.e. is A or B). *)
102 in(c, xB: host);
103 if xB = A || xB = B then
104 let skxB = if xB = A then skA else skB in
105 let pkxB = pk(skxB) in
106 (* Real start of the role *)
107 (* Message 3 *)
108 in(c, m: bitstring);
109 let (NY: nonce, hostY: host) = decrypt(m, skxB) in
110 event beginAparam(hostY, xB);
5.3. GENERALIZED NEEDHAM-SCHROEDER PROTOCOL

(* Message 4: Get the public key certificate for the other host *)
out(c, (xB, hostY));

(* Message 5 *)
in(c, ms: bitstring);
let (pkY: pkey, =hostY) = checksign(ms, pkS) in

(* Message 6 *)
nb: nonce;
event beginAfull(hostY, xB, pkxB, pkY, NY, nb);

(* Message 7 *)
in(c, m3: bitstring);
if nonce_to_bitstring(nb) = decrypt(m3, skB) then
(* OK *)
if hostY = A || hostY = B then

(* Server *)
let processS(skS: sskey) =
in(c, (a: host, b: host));
get keys(=b, sb) in
out(c, sign((sb,b), skS)).

(* Key registration *)
let processK =
in(c, (h: host, k: pkey));
if h <> A && h <> B then insert keys(h,k).

(* Main *)
process
new skA: skey; let pkA = pk(skA) in out(c, pkA); insert keys(A, pkA);
new skB: skey; let pkB = pk(skB) in out(c, pkB); insert keys(B, pkB);
new skS: sskey; let pkS = spk(skS) in out(c, pkS);

(* Launch an unbounded number of sessions of the initiator *)
(! processInitiator(pkS, skA, skB)) |

(* Launch an unbounded number of sessions of the responder *)
(! processResponder(pkS, skA, skB)) |

(* Launch an unbounded number of sessions of the server *)
(! processS(skS)) |

(* Key registration process *)
(! processK)
)

The main novelty of this script is that it allows Alice and Bob to play both roles of the initiator and responder. To achieve this, we could simply duplicate the code, but it is possible to have more elegant encodings. Above, we consider processes processInitiator and processResponder that take as argument both skA and skB (since they can be played by Alice and Bob). Looking for instance at the initiator (Lines 71–79), the adversary first starts the initiator by sending the identity xA of the principal playing the role of the initiator and hostX of its interlocutor. Then, we verify that the initiator is honest, and compute its secret key skxA (skA for A, skB for B) and its corresponding public key pkxA = pk(skxA). We can then run the role as expected. We proceed similarly for the responder.

Other encodings are also possible. For instance, we could define a destructor choosekey by
fun choosekey (host, host, host, skey, skey): skey
reduce forall x1: host, x2: host, sk1: skey, sk2: skey;
    choosekey (x1, x1, x2, sk1, sk2) = sk1
otherwise forall x1: host, x2: host, sk1: skey, sk2: skey;
    choosekey (x2, x1, x2, sk1, sk2) = sk2.

and let skxA be choosekey(xA, A, B, skA, skB) (if xA = A, it returns skA; if xA = B, it returns skB; otherwise, it fails). The latter encoding is perhaps less intuitive, but it avoids internal code duplication when ProVerif expands tests that appear in terms.

Three other points are worth noting:

- We use secrecy assumptions (Lines 30–33) to speed up the resolution process of ProVerif. These lines inform ProVerif that the attacker cannot have the secret keys skA, skB, skS. This information is checked by ProVerif, so that erroneous proofs cannot be obtained even with secrecy assumptions. (See also Section 6.3.1.) Lines 30–33 can be removed without changing the results, ProVerif will just be slightly slower.

- We set ignoreTypes to false (Lines 1–2). By default, ProVerif ignores all types during analysis. However, for this script, it does not terminate with this default setting. By setting ignoreTypes = false, the semantics of processes is changed to check the types. This setting makes it possible to obtain termination. The known attack against this protocol is detected, but it might happen that some type flaw attacks are undetected, when they appear when the types are not checked in processes. More details on the ignoreTypes setting can be found in Section 6.2.2.

There are other ways of obtaining termination in this example, in particular by using a different method for relating identities and keys with two function symbols, one that maps the key to the identity, and one that maps the identity to the key. However, this method also has limitations: it does not allow the adversary to create two principals with the same key. More information on this method can be found in Section 6.3.2.

- We use two different levels of authentication: the events that end with “full” serve in proving Lowe's full agreement [Low97], that is, agreement on all parameters of the protocol (here, host names, keys, and nonces). The events that end with “param” prove agreement on the host names only.

As expected, ProVerif is able to prove the authentication of the responder and secrecy for the initiator; whereas authentication of the initiator and secrecy for the responder fail. The reader is invited to modify the protocol according to Lowe's fix and examine the results produced by ProVerif. (A script for the corrected protocol can be found in examples/pitype/secr-auth/NeedhamSchroederPK-corr.pv. Note that the fixed protocol can be proved correct by ProVerif even when types are ignored.)

5.4 Variants of these security properties

In this section, we consider several security properties of Lowe's corrected version of the Needham-Schroeder public key protocol.

5.4.1 A variant of mutual authentication

In the previous definitions of authentication that we have considered, we require that internal parameters of the protocol (such as nonces) are the same for the initiator and for the responder. However, in the computational model, one generally uses a session identifier that is publicly computable (such as the tuple of the messages of the protocol) as argument of events. One can also do that in ProVerif, as in the following example (file docs/NeedhamSchroederPK-corr-mutual-auth.pv).

1 (* Queries *)
2 fun messtermI{host, host}: bitstring [data].
3 fun messtermR{host, host}: bitstring [data].
5.4. VARIANTS OF THESE SECURITY PROPERTIES

5. event termI (host, host, bitstring).
6. event acceptsI (host, host, bitstring).
7. event acceptsR (host, host, bitstring).
8. event termR (host, host, bitstring).

9. query x: host, m: bitstring;
   inj−event (termI (x, B, m)) \implies inj−event (acceptsR (x, B, m)).
10. query x: host, m: bitstring;
    inj−event (termR (A, x, m)) \implies inj−event (acceptsI (A, x, m)).

(∗ Role of the initiator with identity xA and secret key skxA ∗)
11. let processInitiator (pkS: spkey, skA: skey, skB: skey) =
    (∗ The attacker starts the initiator by choosing identity xA, and its interlocutor xB0.
     We check that xA is honest (i.e. is A or B)
     and get its corresponding key.
    *)
12. in (c, (xA: host, hostX: host));
13. if xA = A || xA = B then
14.    let skxA = if xA = A then skA else skB in
15.    let pkxA = pk (skxA) in
16. (∗ Real start of the role ∗)
17. (∗ Message 1: Get the public key certificate for the other host ∗)
18. out (c, (xA, hostX));
19. (∗ Message 2 ∗)
20. in (c, ms: bitstring);
21. let (pkX: pkey, =hostX) = checksign (ms, pkS) in
22. (∗ Message 3 ∗)
23. new Na: nonce;
24. let m3 = encrypt ((Na, xA), pkX) in
25. out (c, m3);
26. (∗ Message 6 ∗)
27. in (c, m: bitstring);
28. let (=Na, NX2: nonce, =hostX) = decrypt (m, skA) in
29. let m7 = encrypt (nonce_to_bitstring (NX2), pkX) in
30. event termI (xA, hostX, (m3, m));
31. event acceptsI (xA, hostX, (m3, m, m7));
32. (∗ Message 7 ∗)
33. out (c, (m7, messtermI (xA, hostX))).

(∗ Role of the responder with identity xB and secret key skxB ∗)
34. let processResponder (pkS: spkey, skA: skey, skB: skey) =
    (∗ The attacker starts the responder by choosing identity xB.
     We check that xB is honest (i.e. is A or B). ∗)
35. in (c, xB: host);
36. if xB = A || xB = B then
37.    let skxB = if xB = A then skA else skB in
38.    let pkxB = pk (skxB) in
39. (∗ Real start of the role ∗)
40. (∗ Message 3 ∗)
41. in (c, m: bitstring);
42. let (NY: nonce, hostY: host) = decrypt (m, skxB) in
43. (∗ Message 4: Get the public key certificate for the other host ∗)
44. out (c, (xB, hostY));
45. (∗ Message 5 ∗)
\begin{verbatim}
60 \textbf{in}(c, ms: bitstring);
61 \textbf{let} (pkY: pkey, =hostY) = \textbf{checksign}(ms, pkS) \textbf{in}
62 (* Message 6 *)
63 \textbf{new} Nb: nonce;
64 \textbf{let} m6 = \textbf{encrypt}(((NY, Nb, xB), pkY) \textbf{in}
65 \textbf{event} acceptsR(hostY, xB, (m, m6));
66 \textbf{out}(c, m6);
67 (* Message 7 *)
68 \textbf{in}(c, m3: bitstring);
69 \textbf{if} nonce_to_bitstring(Nb) = decrypt(m3, skB) \textbf{then}
70 \textbf{event} termR(hostY, xB, (m, m6, m3));
71 \textbf{out}(c, messetermR(hostY, xB)).
72 (* Server *)
73 \textbf{let} processS(skS: sskey) =
74 \textbf{in}(c, (a: host, b: host));
75 \textbf{get} keys(=b, sb) \textbf{in}
76 \textbf{out}(c, sign((sb, b), skS)).
78 (* Key registration *)
79 \textbf{let} processK =
80 \textbf{in}(c, (h: host, k: pkey));
82 \textbf{if} h <> A \&\& h <> B \textbf{then} \textbf{insert} keys(h, k).
83 (* Start process *)
85 \textbf{process}
86 \textbf{new} skA: skey; \textbf{let} pkA = \textbf{pk}(skA) \textbf{in} \textbf{out}(c, pkA); \textbf{insert} keys(A, pkA);
87 \textbf{new} skB: skey; \textbf{let} pkB = \textbf{pk}(skB) \textbf{in} \textbf{out}(c, pkB); \textbf{insert} keys(B, pkB);
88 \textbf{new} skS: sskey; \textbf{let} pkS = \textbf{spk}(skS) \textbf{in} \textbf{out}(c, pkS);
89 ( (* Launch an unbounded number of sessions of the initiator *)
90 ( \textbf{! processInitiator}(pkS, skA), skB)) \mid
91 ( (* Launch an unbounded number of sessions of the responder *)
92 ( \textbf{! processResponder}(pkS, skA), skB)) \mid
93 ( (* Launch an unbounded number of sessions of the server *)
94 ( \textbf{! processS(skS)})) \mid
96 ( (* Key registration process *)
97 ( \textbf{! processK})
98 )

The query
10 \textbf{query} x: host, m: bitstring;
11 \textbf{inj-event}(termI(x,B,m)) \implies \textbf{inj-event}(acceptsR(x,B,m)).
\end{verbatim}

This query corresponds to the authentication of the responder B to the initiator x: when the initiator x terminates a session apparently with B (event termI(x,B,m), executed at Line 40, when the initiator terminates, after receiving its last message, message 6), the responder B has accepted with x (event acceptsR(x,B,m), executed at Line 65, when the responder accepts, just before sending message 6). We use a fixed value B for the name of the responder, and not a variable, because if a variable were used, the initiator might run a session with a dishonest participant included in the adversary, and in this case, it is perfectly ok that the event acceptsR is not executed. Since the initiator is executed with identities A and B, x is either A or B, so the query above proves correct authentication of the responder B to the initiator x when x is A and when it is B. The same property for the responder A holds by symmetry, swapping A and B.

Similarly, the query
12 \textbf{query} x: host, m: bitstring;
13 \textbf{inj-event}(termR(A,x,m)) \implies \textbf{inj-event}(acceptsI(A,x,m)).
corresponds to the authentication of the initiator A to the responder x: when the responder x terminates a session apparently with A (event termR(A,x,m), executed at Line 70, when the responder terminates, after receiving its last message, message 7), the initiator A has accepted with x (event acceptsI(A,x,m), executed at Line 41, when the initiator accepts, just before sending message 7).

The position of events follows Figure 3.4. The events termR and acceptsI take as arguments the host names of the initiator and the responder, and the tuples of messages exchanged between the initiator and the responder. (Messages sent to or received from the server to obtain the certificates are ignored.) Because the last message is from the initiator to the responder, that message is not known to the responder when it accepts, so that message is omitted from the arguments of the events acceptsR and termI.

### 5.4.2 Authenticated key exchange

In the computational model, the security of an authenticated key exchange protocol is typically shown by proving, in addition to mutual authentication, that the exchanged key is indistinguishable from a random key. More precisely, in the real-or-random model [AFP06], one allows the adversary to perform several test queries, which either return the real key or a fresh random key, and these two cases must be indistinguishable. When the test query is performed on a session between a honest and a dishonest participant, the returned key is always the real one. When the test query is performed several times on the same session, or on the partner session (that is, the session of the interlocutor that has the same session identifier), it returns the same key (whether real or random). Taking into account partnering in the definition of test queries is rather tricky, so we have developed an alternative characterization that does not require partnering [Bla07].

- We use events similar to those for mutual authentication, except that termR and acceptsI take the exchanged key as an additional argument. We prove the following properties:

  - \[\text{query } x: \text{host} , m: \text{bitstring};\]
    \[
    \text{inj-event}(\text{termI}(x,B,m)) \Rightarrow \text{inj-event}(\text{acceptsR}(x,B,m)).
    \]
  - \[\text{query } x: \text{host} , k: \text{nonce} , m: \text{bitstring};\]
    \[
    \text{inj-event}(\text{termR}(A,x,k,m)) \Rightarrow \text{inj-event}(\text{acceptsI}(A,x,k,m)).
    \]
  - \[\text{query } x: \text{host} , k: \text{nonce} , k’: \text{nonce} , m: \text{bitstring};\]
    \[
    \text{event}(\text{termR}(A,x,k,m)) \land \text{event}(\text{acceptsI}(A,x,k’,m)) \Rightarrow k = k’.
    \]

- When the initiator or the responder execute a session with a dishonest participant, they output the exchanged key. (This key is also output by the test queries in this case.) We show the secrecy of the keys established by the initiator when it runs sessions with a honest responder, in the sense that these keys are indistinguishable from independent random numbers.

The first two correspondences imply mutual authentication. The real-or-random indistinguishability of the key is obtained by combining the last two correspondences with the secrecy of the initiator’s key. Intuitively, the correspondences allow us to show that each responder’s key in a session with a honest initiator is in fact also an initiator’s key (which we can find by looking for the same session identifier), so showing that the initiator’s key cannot be distinguished from independent random numbers is sufficient to show the secrecy of the key.

Outputting the exchanged key in a session with a dishonest interlocutor allows to detect Unknown Key Share (UKS) attacks [DvOW92], in which an initiator A believes he shares a key with a responder B, but B believes he shares that key with a dishonest C. This key is then output to the adversary, so the secrecy of the initiator’s key is broken. However, bilateral UKS attacks [CT08], in which A shares a key with a dishonest C and B shares the same key with a dishonest D, may remain undetected under this definition of key exchange. These attacks can be detected by testing the following correspondence:

\[\text{query } x: \text{host} , y: \text{host} , x’: \text{host} , y’: \text{host} , k: \text{nonce} , k’: \text{nonce} , m: \text{bitstring} , m’: \text{bitstring};\]
\[
\text{event}(\text{termR}(x,y,k,m)) \land \text{event}(\text{acceptsI}(x’,y’,k,m’)) \Rightarrow x = x’ \land y = y’.
\]

to verify that, if two sessions terminate with the same key, then they are between the same hosts (and we could additionally verify \(m = m’\) to make sure that these sessions have the same session identifiers).
The following script aims at verifying this notion of authenticated key exchange, assuming that the exchanged key is Na (file docs/NeedhamSchroederPK-corr-ake.pv).

(* Queries *)

```plaintext
free secretA : bitstring [private].
query attacker(secretA).

fun messtermI(host, host): bitstring [data].
fun messtermR(host, host): bitstring [data].

event termI(host, host, bitstring).
event acceptsI(host, host, nonce, bitstring).
event acceptsR(host, host, bitstring).
event termR(host, host, nonce, bitstring).

query x: host, m: bitstring:
 inj-event(termI(x,B,m)) => inj-event(acceptsR(x,B,m)).
query x: host, k: nonce, m: bitstring:
 inj-event(termR(A,x,k,m)) => inj-event(acceptsI(A,x,k,m)).

(* We would like to perform a query
query x: host, k:nonce, k':nonce, m: bitstring;
 event(termR(A,x,k,m)) <=> event(acceptsI(A,x,k',m)) => k = k'.
but conjunctions before => are not supported, so we encode this query. *)
table tableacceptsI(host, host, nonce, bitstring).
table tabletermR(host, host, nonce, bitstring).
event termIR(host, host, nonce, bitstring).

query x: host, k:nonce, k':nonce, m: bitstring:
 event(termIR(A,x,k,m,A,x,k',m)) => k = k'.

(* We encode the query for detecting bilateral UKS attacks
query x: host, y:host, x':host, y':host, k:nonce, k':nonce,
 m: bitstring, m':bitstring;
 event(termR(x,y,k,m)) <=> event(acceptsI(x',y',k,m')) => x = x' <=> y = y'.
using the same technique as for the query above. *)
query x: host, y:host, x':host, y':host, k:nonce, k':nonce,
m: bitstring, m':bitstring;
 event(termIR(x,y,k,m,x',y',k,m')) => x = x' && y = y'.

(* Role of the initiator with identity xA and secret key skxA *)
let processInitiator(pkS: spkey, skA: skey, skB: skey) =
 (* The attacker starts the initiator by choosing identity xA,
 and its interlocutor xB0.
 We check that xA is honest (i.e. is A or B)
 and get its corresponding key. *)
in(c, (xA: host, hostX: host));
if xA = A || xA = B then
 let skxA = if xA = A then skA else skB in
 let pkxA = pk(skxA) in
 (* Real start of the role *)
(* Message 1: Get the public key certificate for the other host *)
out(c, (xA, hostX));
(* Message 2 *)
in(c, ms: bitstring);
```
let (pkX: pkey, =hostX) = checksign(ms, pkS) in
(* Message 3 *)
new Na: nonce;
let m3 = encrypt((Na, xA), pkX) in
out(c, m3);
(* Message 6 *)
in(c, m: bitstring);
let (=Na, NX2: nonce, =hostX) = decrypt(m, skA) in
let m7 = encrypt(nonce_to_bitstring(NX2), pkX) in
event termI(xA, hostX, (m3, m));
event acceptsI(xA, hostX, Na, (m3, m, m7));
insert tableacceptsI(xA, hostX, Na, (m3, m, m7));
(* Message 7 *)
if hostX = A || hostX = B then
  
  out(c, sencrypt(secretA, Na));
  out(c, (m7, messtermI(xA, hostX)));
)
else
  
  out(c, Na);
  out(c, (m7, messtermI(xA, hostX)));
).

(* Role of the responder with identity xB and secret key skxB *)
let processResponder(pkS: spkey, skA: skey, skB: skey) =
(* The attacker starts the responder by choosing identity xB. We check that xB is honest (i.e. is A or B). *)
in(c, xB: host);
if xB = A || xB = B then
  
  let skxB = if xB = A then skA else skB in
  let pkxB = pk(skxB) in
  (* Real start of the role *)
  (* Message 3 *)
  in(c, m: bitstring);
  let (NY: nonce, hostY: host) = decrypt(m, skxB) in
  (* Message 4: Get the public key certificate for the other host *)
  out(c, (xB, hostY));
  (* Message 5 *)
in(c, ms: bitstring);
  let (pkY: pkey, =hostY) = checksign(ms, pkS) in
  (* Message 6 *)
  new Nb: nonce;
  let m6 = encrypt((NY, Nb, xB), pkY) in
  event acceptsR(hostY, xB, (m, m6));
  out(c, m6);
  (* Message 7 *)
in(c, m3: bitstring);
if nonce_to_bitstring(Nb) = decrypt(m3, skB) then
  
  event termR(hostY, xB, NY, (m, m6, m3));
  insert tabletermR(hostY, xB, NY, (m, m6, m3));
if hostY = A || hostY = B then
  
  out(c, messtermR(hostY, xB))
else
  
  (}
out(c, NY);
out(c, messtermR(hostY, xB));

(* Server *)
let processS(skS: sskey) =
in(c, (a: host, b: host));
get keys(=b, sb) in
out(c, sign((sb, b), skS)).

(* Key registration *)
let processK =
in(c, (h: host, k: pkey));
if h <> A && h <> B then insert keys(h, k).

(* Process used for encoding the queries with conjunctions *)
event(termR(...)) @& event(acceptsI(...)) ==> ... *)
let processQ =
! get tableacceptsI(hI, hI', kI, mI) in get tabletermR(hR, hR', kR, mR) in
event termIR(hI, hI', kI, mI, hR, hR', kR, mR).

(* Start process *)
process
new skA: skey; let pkA = pk(skA) in out(c, pkA); insert keys(A, pkA);
new skB: skey; let pkB = pk(skB) in out(c, pkB); insert keys(B, pkB);
new skS: sskey; let pkS = spk(skS) in out(c, pkS);

(* Launch an unbounded number of sessions of the initiator *)
(! processInitiator(pkS, skA, skB)) |
(* Launch an unbounded number of sessions of the responder *)
(! processResponder(pkS, skA, skB)) |
(* Launch an unbounded number of sessions of the server *)
(! processS(skS)) |
(* Key registration process *)
(! processK) |
(* Process used for encoding a query with @& before ==> *)
processQ

The correspondences with conjunctions of events before the arrow ==> cannot be verified directly in ProVerif. We apply the technique outlined page 40 to encode them: we record events termR in table tabletermR and events acceptsI in table tableacceptsI. The process processQ (lines 127-129) executes event termR when events have been recorded in both tables. We can then use event(termR(A, x, k, m, A, x, k', m)) instead of the conjunction event(termR(A, x, k, m)) & event(acceptsI(A, x, k', m)) and event(termIR(x, y, k, m, x', y', k, m')) instead of event(termIR(x, y, k, m)) & event(acceptsI(x', y', k, m')). ProVerif finds a bilateral UKS attack: if C as responder runs a session with A, it gets Na, then D as initiator can use the same nonce Na in a session with responder B, thus obtaining two sessions, between A and C and between D and B, that share the same key Na. (Such an attack appears more generally when the key is determined by a single participant of the protocol.) The other properties are proved by ProVerif.

The above script verifies syntactic secrecy of the initiator's key Na. To be even closer to the computational definition, we can verify its secrecy using the real-or-random secrecy notion (page 45), as in the following script (file docs/NeedhamSchroederPK-corr-ake-RoR.pv):

(* Termination messages *)
fun messtermI (host, host) : bitsstring [data].
fun messtermR (host, host) : bitsstring [data].

set ignoreTypes = false.

(* Role of the initiator with identity xA and secret key skxA *)
let processInitiator (pkS: spkey, skA: skey, skB: skey) =
  (* The attacker starts the initiator by choosing identity xA, and its interlocutor xB0. *)
  W e check that xA is honest (i.e. is A or B)
  and get its corresponding key.
 (* )
in (c, (xA: host, hostX: host));
if xA = A || xA = B then
let skxA = if xA = A then skA else skB in
let pkxA = pk (skxA) in
(* Real start of the role *)
(* Message 1: Get the public key certificate for the other host *)
out (c, (xA, hostX));
(* Message 2 *)
in (c, ms: bitsstring);
let (pkX: pkey, =hostX) = checksign (ms, pkS) in
(* Message 3 *)
new Na: nonce;
let m3 = encrypt ((Na, xA), pkX) in
out (c, m3);
(* Message 6 *)
in (c, m: bitsstring);
let (=Na, NX2: nonce, =hostX) = decrypt (m, skA) in
let m7 = encrypt (nonce_to_bitsstring (NX2), pkX) in
(* Message 7 *)
if hostX = A || hostX = B then
  (new random: nonce;
   out (c, choice [Na, random]);
   out (c, (m7, messtermI (xA, hostX)))
  )
else
  (out (c, Na);
   out (c, (m7, messtermI (xA, hostX)))
   ).

(* Role of the responder with identity xB and secret key skxB *)
let processResponder (pkS: spkey, skA: skey, skB: skey) =
  (* The attacker starts the responder by choosing identity xB. *)
  W e check that xB is honest (i.e. is A or B). *)
in (c, xB: host);
if xB = A || xB = B then
let skxB = if xB = A then skA else skB in
let pkxB = pk (skxB) in
(* Real start of the role *)
(* Message 3 *)
in (c, m: bitsstring);
let (NY: nonce, hostY: host) = decrypt (m, skxB) in
CHAPTER 5. NEEDHAM-SCHROEDER: CASE STUDY

(* Message 4: Get the public key certificate for the other host *)
57 out(c, (xB, hostY));
58 (* Message 5 *)
59 let (pkY: pkey, =hostY) = checksign(ms, pkS) in
60 (* Message 6 *)
61 new Nb: nonce;
62 let m6 = encrypt((NY, Nb, xB), pkY) in
63 out(c, m6);
64 (* Message 7 *)
65 in(c, m3: bitstring);
66 let m6 = encrypt((NY, Nb, xB), pkY) in
67 out(c, m6);
68 if nonce_to_bitstring(Nb) = decrypt(m3, skB) then
69 if hostY = A || hostY = B then
70 out(c, messetermR(hostY, xB))
71 else
72 ( out(c, NY);
73 out(c, messetermR(hostY, xB))
74 ).
75 (* Server *)
76 let processS(skS: sskey) =
77 in(c, (a: host, b: host));
78 get keys(=b, sb) in
79 out(c, sign((sb, b), skS)).
80 (* Key registration *)
81 let processK =
82 in(c, (h: host, k: pkey));
83 if h <> A && h <> B then insert keys(h, k).
84 (* Start process *)
85 process
86 new skA: skey; let pkA = pk(skA) in out(c, pkA); insert keys(A, pkA);
87 new skB: skey; let pkB = pk(skB) in out(c, pkB); insert keys(B, pkB);
88 new skS: sskey; let pkS = spk(skS) in out(c, pkS);
89 ( (* Launch an unbounded number of sessions of the initiator *)
90 (!processInitiator(pkS, skA, skB)) |
91 (* Launch an unbounded number of sessions of the responder *)
92 (!processResponder(pkS, skA, skB)) |
93 (* Launch an unbounded number of sessions of the server *)
94 (!processS(skS)) |
95 (* Key registration process *)
96 (!processK)
97 )
98
Line 36 outputs either the real key Na or a fresh random key, and the goal is to prove that the adversary cannot distinguish these two situations. In order to obtain termination, we require that all code including the adversary be well-typed (Line 5). This prevents in particular the generation of certificates in which the host names are themselves nested signatures of unbounded depth. Unfortunately, ProVerif finds a false attack in which the output key is used to build message 3 (either encrypt((Na, A), pkB) or encrypt((random, A), pkB)), send it to the responder, which replies with message 6 (that is, encrypt((Na, Nb, A), pkA) or encrypt((random, Nb, A), pkA)), which is accepted by the initiator if and only if the key is the real key Na.
5.4. VARIANTS OF THESE SECURITY PROPERTIES

A similar verification can be done with other possible keys (for instance, Nb, h(Na), h(Nb), h(Na,Nb) where h is a hash function). We leave these verifications to the reader and just note that the false attack above disappears for the key h(Na) (but we still have to restrict ourselves to a well-typed adversary).

In order to obtain this result, a trick is necessary: if random is generated at the end of the protocol, ProVerif represents it internally as a function of the previously received messages, including message 6. This leads to a false attack in which two different values of random (generated after receiving different messages 6) are associated to the same Na. This false attack can be eliminated by moving the generation of random just after the generation of Na.

5.4.3 Full ordering of the messages

We can also show that, if a responder terminates the protocol with an honest initiator, then all messages of the protocol between the initiator and the responder have been exchanged in the right order. (We ignore messages sent to or received from the server.) This is shown in the following script (file docs/NeedhamSchroederPK-corr-all-messages.pv).

```
(* Queries *)
event endB(host, host, pkey, pkey, nonce, nonce).
event e3(host, host, pkey, pkey, nonce, nonce).
event e2(host, host, pkey, pkey, nonce, nonce).
event e1(host, host, pkey, pkey, nonce).
query y: host, pkx: pkey, pky: pkey, nx: nonce, ny: nonce;
inj-event(endB(A, y, pkx, pky, nx, ny)) =>
 (inj-event(e3(A, y, pkx, pky, nx, ny)) =>
 (inj-event(e2(A, y, pkx, pky, nx, ny)) &&
 inj-event(e1(A, y, pkx, pky, nx)))).

(* Role of the initiator with identity xA and secret key skxA *)
let processInitiator(pkS: spkey, skA: skey, skB: skey) =
 (* The attacker starts the initiator by choosing identity xA, and its interlocutor xB0. *)
 We check that xA is honest (i.e. is A or B) and get its corresponding key.
(* Real start of the role *)
(* Message 1: Get the public key certificate for the other host *)
out(c, (xA, hostX)).
(* Message 2 *)
in(c, ms: bitstring);
let (pkX: pkey, =hostX) = checksign(ms, pkS) in
(* Message 3 *)
new Na: nonce;
event e1(xA, hostX, pkxA, pkX, Na);
out(c, encrypt((Na, xA), pkX));
(* Message 6 *)
in(c, m: bitstring);
let (=Na, NX2: nonce, =hostX) = decrypt(m, skA) in
let m7 = encrypt(nonce_to_bitstring(NX2), pkX) in
event e3(xA, hostX, pkxA, pkX, Na, NX2);
(* Message 7 *)
out(c, m7).
```
CHAPTER 5. NEEDHAM-SCHROEDER: CASE STUDY

41 (* Role of the responder with identity xB and secret key skxB *)
42 let processResponder(pkS: spkey, skA: skey, skB: skey) =
43 (* The attacker starts the responder by choosing identity xB. We check that xB is honest (i.e. is A or B). *)
44 in (c, xB: host);
45 if xB = A || xB = B then
46 let skxB = if xB = A then skA else skB in
47 let pkxB = pk(skxB) in
48 (* Real start of the role *)
49 let (NY: nonce, hostY: host) = decrypt(m, skxB) in
50 (* Message 3 *)
51 in (c, m: bitstring);
52 let ( NYPD, hostY ) = decrypt ( m, skxB ) in
53 (* Message 4: Get the public key certificate for the other host *)
54 out ( c, (xW, hostY) );
55 (* Message 5 *)
56 in (c, m: bitstring);
57 let (pkY: pkey, hostY ) = checksign ( ms , pkS ) in
58 (* Message 6 *)
59 let new Nb: nonce =
60 event e2 ( hostY, xB, pkY, pkxB, NY, Nb ) ;
61 out ( c, encrypt ( (NY, Nb, xB) , pkY ) ) ;
62 (* Message 7 *)
63 in (c, m3: bitstring);
64 if nonce_to_bitstring ( Nb ) = decrypt ( m3, skB ) then
65 event endB ( hostY, xB, pkY, pkxB, NY, Nb ) .
66
67 (* Server *)
68 let processS ( skS: sskey ) =
69 in (c, (a: host, b: host) );
70 get keys (=b, sb) in
71 out (c, sign (= sb, b, skS ) ).
72
73 (* Key registration *)
74 let processK =
75 in (c, (h: host, k: pkey) );
76 if h <> A && h <> B then insert keys ( h, k ).
77
78 (* Start process *)
79 process
80 new skA: skey; let pkA = pk ( skA ) in out ( c, pkA ) ; insert keys ( A, pkA ) ;
81 new skB: skey; let pkB = pk ( skB ) in out ( c, pkB ) ; insert keys ( B, pkB ) ;
82 new skS: sskey; let pkS = spk ( skS ) in out ( c, pkS ) ;
83 ( *
84 ( Launch an unbounded number of sessions of the initiator *)
85 (! processInitiator ( pkS, skA, skB ) ) |
86 ( Launch an unbounded number of sessions of the responder *)
87 (! processResponder ( pkS, skA, skB ) ) |
88 ( Launch an unbounded number of sessions of the server *)
89 (! processS ( skS ) ) |
90 ( Key registration process *)
91 (! processK )
92 )

The event endB (Line 66) means that the responder has completed the protocol, e3 (Line 38) that the initiator received message 6 and sent message 7, e2 (Line 61) that the responder received message 3
and sent message 6, e1 (Line 32) that the initiator sent message 3. These events take as arguments all parameters of the protocol: the host names, their public keys, and the nonces, except e1 which cannot take Nb as argument since it has not been chosen yet when e1 is executed. We would like to prove the correspondence

\[
\text{inj-event}(\text{endB}(A, y, pkx, pky, nx, ny)) \implies \\
(\text{inj-event}(e3(A, y, pkx, pky, nx, ny)) \implies \\
(\text{inj-event}(e2(A, y, pkx, pky, nx, ny)) \implies \\
\text{inj-event}(e1(A, y, pkx, pky, nx)))).
\]

However, the direct proof of this correspondence in ProVerif fails because message 3 can be replayed, yielding several e2 for a single e1 as outlined page 41. We use the solution suggested there: we prove the correspondence

\[
\text{inj-event}(\text{endB}(A, y, pkx, pky, nx, ny)) \implies \\
(\text{inj-event}(e3(A, y, pkx, pky, nx, ny)) \implies \\
(\text{inj-event}(e2(A, y, pkx, pky, nx, ny)) \& \\
\text{inj-event}(e1(A, y, pkx, pky, nx)))).
\]

instead (lines 7-11) and conclude the desired correspondence by noticing that event e2 which has Na as argument cannot be executed before Na has been sent, that is, before e1 has been executed.
Chapter 6

Advanced reference

This chapter introduces ProVerif’s advanced capabilities. We provide the complete grammar in Appendix A.

6.1 Advanced modeling features and security properties

6.1.1 Predicates

ProVerif supports predicates defined by Horn clauses as a means of performing complex tests or computations. Such predicates are convenient because they can easily be encoded into the internal representation of ProVerif which also uses clauses. Predicates are defined as follows:

\[ \text{pred } p(t_1, \ldots, t_k) . \]

declares a predicate \( p \) of arity \( k \) that takes arguments of types \( t_1, \ldots, t_k \). The predicates attacker, mess, ev, and evinj are reserved for internal use by ProVerif and cannot be declared by the user. The declaration

\[ \text{clauses } C_1; \ldots; C_n . \]

declares the clauses \( C_1, \ldots, C_n \) which define the meaning of predicates. Clauses are built from facts which can be \( p(M_1, \ldots, M_k) \) for some predicate declared by \( \text{pred} \), \( M_1 = M_2 \), or \( M_1 <> M_2 \). The clauses \( C_i \) can take the following forms:

- **forall** \( x_1 : t_1, \ldots, x_n : t_n ; \ F \)
  which means that the fact \( F \) holds for all values of the variables \( x_1, \ldots, x_n \) of type \( t_1, \ldots, t_n \) respectively; \( F \) must be of the form \( p(M_1, \ldots, M_k) \).

- **forall** \( x_1 : t_1, \ldots, x_n : t_n ; \ F_1 \& \& \ldots \& \& F_m \rightarrow F \)
  which means that \( F_1, \ldots, \) and \( F_m \) imply \( F \) for all values of the variables \( x_1, \ldots, x_n \) of type \( t_1, \ldots, t_n \) respectively; \( F \) must be of the form \( p(M_1, \ldots, M_k) \); \( F_1, \ldots, F_m \) can be any fact.

In all clauses, the fact \( F \) is considered to hold only if its arguments do not fail and when the arguments of the facts in the hypothesis of the clause do not fail: for facts \( p(M_1, \ldots, M_k) \), \( M_1, \ldots, M_k \) do not fail, for equalities \( M_1 = M_2 \) and inequalities \( M_1 <> M_2 \), \( M_1 \) and \( M_2 \) do not fail.

Additionally, ProVerif allows the following equivalence declaration in place of a clause

\[ \text{forall } x_1 : t_1, \ldots, x_n : t_n ; \ F_1 \& \& \ldots \& \& F_m \leftrightarrow F \]

which means that \( F_1, \ldots, \) and \( F_m \) hold if and only if \( F \) holds; \( F_1, \ldots, F_m, F \) must be of the form \( p(M_1, \ldots, M_k) \). Moreover, \( \sigma F_i \) must be of smaller size than \( \sigma F \) for all substitutions \( \sigma \) and two facts \( F \) of different equivalence declarations must not unify. (ProVerif will check these conditions.) This equivalence declaration can be considered as an abbreviation for the clauses.
forall \( x_1 : t_1, \ldots, x_n : t_n \): \( F_1 \land \ldots \land F_m \rightarrow F \)
forall \( x_1 : t_1, \ldots, x_n : t_n \): \( F \rightarrow F_i \) (1 \( \leq i \leq m \))

but it further enables the replacement of \( \sigma F \) with the equivalent facts \( \sigma F_1 \land \ldots \land \sigma F_m \) in all clauses. This replacement may speed up the resolution process, and generalizes the replacement performed for data constructors.

The equivalence declaration
forall \( x_1 : t_1, \ldots, x_n : t_n \): \( F_1 \land \ldots \land F_m \leftrightarrow F \)
is similar to the previous one but additionally prevents resolving upon facts that unify with \( F \). (This affects the internal resolution algorithm of ProVerif: it may speed up the algorithm, or allow it to terminate, but does not change the meaning of the clause.)

In all these clauses, all variables of \( F_1, \ldots, F_m, F \) must be universally quantified by forall \( x_1 : t_1, \ldots, x_n : t_n \). When \( F_1, \ldots, F_m, F \) contain no variables, the part forall \( x_1 : t_1, \ldots, x_n : t_n \) can be omitted. In forall \( x_1 : t_1, \ldots, x_n : t_n \), the types \( t_1, \ldots, t_n \) can be either just a type identifier, or of the form \( t \) or fail, which means that the considered variable is allowed to take the special value fail in addition to the values of type \( t \).

Finally, the declaration
elimtrue \( x_1 : t_1, \ldots, x_n : t_n \): \( p(M_1, \ldots, M_k) \).

means that for all values of the variables \( x_1, \ldots, x_n \), the fact \( p(M_1, \ldots, M_k) \) holds, like the declaration

clauses forall \( x_1 : t_1, \ldots, x_n : t_n \): \( p(M_1, \ldots, M_k) \). However, it additionally enables an optimization: in a clause \( R = F' \land\land H \rightarrow C \), if \( F' \) unifies with \( F \) with most general unifier \( \sigma_u \) and all variables of \( F' \) modified by \( \sigma_u \) do not occur in the rest of \( R \) then the hypothesis \( F' \) can be removed: \( R \) is transformed into \( H \rightarrow C \), by resolving with \( F \). As above, the types \( t_1, \ldots, t_n \) can be either just a type identifier, or of the form \( t \) or fail.

Predicate evaluation. Predicates can be used in if tests. As a trivial example, consider the script:
pred \( p(\text{bitstring}, \text{bitstring}) \).
elimtrue \( x : \text{bitstring}, y : \text{bitstring} ; p(x, y) \).
event e.
query event (e).

process new m: \text{bitstring}; new n: \text{bitstring}; if \( p(m, n) \) then event e

in which ProVerif demonstrates the reachability of event \( e \).

Predicates can also be evaluated using the let ... suchthat construct:
let \( x_1 : t_1, \ldots, x_n : t_n \) suchthat \( p(M_1, \ldots, M_k) \) in \( P \) else \( Q \)

where \( M_1, \ldots, M_k \) are terms built over variables \( x_1, \ldots, x_n \) of type \( t_1, \ldots, t_n \) and other terms. If there exists a binding of \( x_1, \ldots, x_n \) such that the fact \( p(M_1, \ldots, M_k) \) holds, then \( P \) is executed (with the variables \( x_1, \ldots, x_n \) bound inside \( P \)); if no such binding can be achieved, then \( Q \) is executed. As usual, \( Q \) may be omitted when it is the null process. When there are several suitable bindings, one possibility is chosen (but ProVerif considers all possibilities when reasoning). Note that the let ... suchthat construct does not allow an empty set of variables \( x_1, \ldots, x_n \); in this case, the construct if \( p(M_1, \ldots, M_k) \) then \( P \) else \( Q \) should be used instead.

The let ... suchthat construct is allowed in enriched terms (see Section 4.1.3) as well as in processes.

Note that there is an implementability condition on predicates, to make sure that the values of \( x_1, \ldots, x_n \) in let \( x_1 : t_1, \ldots, x_n : t_n \) suchthat constructs can be efficiently computed. Essentially, for each predicate invocation, we bind variables in the conclusion of the clauses that define this predicate and whose position corresponds to bound arguments of the predicate invocation. Then, when evaluating hypotheses of clauses from left to right, all variables of predicates must get bound by the corresponding predicate call. The verification of the implementability condition can be disabled by
set predicatesImplementable = nocheck.

Recursive definitions of predicates are allowed.

Predicates and the `let ... suchthat` construct are incompatible with strong secrecy (modeled by `noninterf`) and with `choice`.

Example: Modeling sets with predicates. As an example, we will demonstrate how to model sets with predicates (see file `docs/ex_predicates.pv`).

```plaintext
type bset.
fun consset(bitstring, bset): bset [data].
const emptyset: bset [data].

Sets are represented by lists: emptyset is the empty list and consset(M,N) concatenates M at the head of the list N.

pred mem(bitstring, bset).
clauses
 for all x:bitstring, y:bset; mem(x,consset(x,y));
 for all x:bitstring, y:bset, z:bitstring; mem(x,y) -> mem(x,consset(z,y)).
```

The predicate `mem` represents set membership. The first clause states that `mem(M,N)` holds for some terms `M`, `N` if `N` is of the form `consset(M,N')`, that is, `M` is at the head of `N`. The second clause states that `mem(M,N)` holds if `N = consset(M',N')` and `mem(M,N')` holds, that is, if `M` is in the tail of `N`.

We conclude our example with a look at the following ProVerif script:

```plaintext
1 event e.
2 event e'.
3 query event(e).
4 query event(e').
5
6 type bset.
7 fun consset(bitstring, bset): bset [data].
8 const emptyset: bset [data].
9 pred mem(bitstring, bset).
10 clauses
11 for all x:bitstring, y:bset; mem(x,consset(x,y));
12 for all x:bitstring, y:bset, z:bitstring; mem(x,y) -> mem(x,consset(z,y)).
13
14 process
15 new a: bitstring;new b: bitstring; new c: bitstring;
16 let x = consset(a,emptyset) in
17 let y = consset(b,x) in
18 let z = consset(c,y) in
19 if mem(a,z) then
20 if mem(b,z) then
21 if mem(c,z) then
22 event e
23)
24 let w:bitstring suchthat mem(w,x) in event e'
25)
```

As expected, ProVerif demonstrates reachability of both `e` and `e'`. Observe that `e'` is reachable by binding the name `a` to the variable `w`.

Using predicates in queries. User-defined predicates can also be used in queries, so that the grammar of facts `F` in Figure 4.2 is extended with user-defined facts `p(M_1,...,M_n)`. As an example, the query

```plaintext
query x: bitstring; event(e(x)) \implies p(x)
```
holds when, if the event e(x) has been executed, then p(x) holds. (If this property depends on the code of the protocol but not on the definition of p, for instance because the event e(x) can be executed only after a successful test \textbf{if} \( p(x) \text{ holds.} \) \textbf{then}, a good way to prove this query is to declare the predicate p with option \textbf{block} and to omit the clauses that define p, so that ProVerif does not use the definition of p. See below for additional information on the predicate option \textbf{block}.)

**Predicate options.** Predicate declarations may also mention options:

\[
\text{pred } p(t_1, \ldots, t_k) \ [o_1, \ldots, o_n].
\]

The allowed options \( o_1, \ldots, o_n \) are:

- \textbf{block}: Declares the predicate \( p \) as a blocking predicate. Blocking predicates must appear only in hypotheses of clauses. This situation typically happens when the predicate is defined by no clause declaration, but is used in tests or \textbf{let} \ldots \textbf{suchthat} constructs in the process (which leads to generating clauses that contain the predicate in hypothesis).

Instead of trying to prove facts containing these predicates (which is impossible since no clause implies such facts), ProVerif collects hypotheses containing the blocking predicates necessary to prove the queries. In other words, ProVerif proves properties that hold for any definition of the considered blocking predicate.

- \textbf{memberOptim}: This must be used only when \( p \) is defined by

\[
p(x, f(x, y)) \quad p(x, y) \rightarrow p(x, f(x', y))
\]

where \( f \) is a data constructor. (Note that it corresponds to the case in which \( p \) is the membership predicate and \( f(x, y) \) represents the union of element \( x \) and set \( y \).)

\textbf{memberOptim} enables the following optimization: \texttt{attacker(x) \&\& p(M_1, x) \&\& \ldots \&\& p(M_n, x)} where \( p \) is declared \textbf{memberOptim} is replaced with \texttt{attacker(x) \&\& attacker(M_1) \&\& \ldots \&\& attacker(M_n)} when \( x \) does not occur elsewhere (just take \( x = f(M_1, \ldots f(M_n, x') \) and notice that \texttt{attacker(x)} if and only if \texttt{attacker(M_1)}, \ldots, \texttt{attacker(M_n)}, and \texttt{attacker(x')}), or when the clause has no selected hypothesis. In the last case, this introduces an approximation.

When \( x \) occurs in several \textbf{memberOptim} predicates, the transformation may introduce an approximation. (For example, consider \( p_1 \) and \( p_2 \) defined as above respectively using \( f_1 \) and \( f_2 \) as data constructors. Then \( p_1(M, x) \&\& p_2(M', x) \) is never true: for it to be true, \( x \) should be at the same time \( f_1(\_\_\_) \) and \( f_2(\_\_\_\_) \).

### 6.1.2 Referring to bound names in queries

Until now, we have considered queries that refer only to free names of the process (declared by \textbf{free}), for instance \texttt{query attacker(s)} when \( s \) is declared by \textbf{free s:t [private]}. It is in fact also possible to refer to bound names (declared by \textbf{new n:t in the process}) in queries. To distinguish them from free names, they are denoted by \textbf{new n} in the query. As an example, consider the following input file:

1 \textbf{free c:channel}.
2 \textbf{fun h(bitstring):bitstring}.
3
4 \textbf{free n:bitstring}.
5 \textbf{query attacker(h((n,new n)))}.
6
7 \textbf{process new n:bitstring; out(c,n)}

in which the process constructs and outputs a fresh name. Observe that the free name \( n \) is distinct from the bound name \( n \) and the query evaluates whether the attacker can construct a hash of the free name paired with the bound name. When an identifier is defined as a free name and the same identifier is used to define a bound name, ProVerif produces a warning. Similarly, a warning is also produced if the same
identifier is used by two names or variables within the same scope. For clarity, we strongly discourage this practice and promote the use of distinct identifiers.

The term \texttt{new n} in a query designates any name created at the restriction \texttt{new n}:t in the process. It is also possible to make it more precise which bound names we want to designate: if the restriction \texttt{new n}:t is in the scope of a variable \texttt{x}, we can write \texttt{new n}\texttt{[x = M]} to designate any name created by the restriction \texttt{new n}:t when the value of \texttt{x} is \texttt{M}. This can be extended to several variables: \texttt{new n}\texttt{[x_1 = M_1, \ldots, x_n = M_n]}. (This is related to the internal representation of bound names in ProVerif. Essentially, names are represented as functions of the variables which they are in the scope of. For example, the name \texttt{a} in the process \texttt{new a:nonce} is not in the scope of any variables and hence the name is modeled without arguments as \texttt{a[ ]}; whereas the name \texttt{b} in the process \texttt{in(c.(x:bitstring,y:bitstring);new b:nonce} is in the scope of variables \texttt{x, y} and hence will be represented by \texttt{b[x=M,y=N]} where the terms \texttt{M, N} are the values of \texttt{x} and \texttt{y} at runtime, respectively.) Consider, for example, the process:

1. \texttt{free c:channel.}
2. \texttt{free A:bitstring.}
3. \texttt{event e(bitstring).}
4. \texttt{query event(e(new a[x=A;y=new B])).}
5. \texttt{process}
6. \texttt{(in(c,(y:bitstring,x:bitstring));new a:bitstring; event e(a))}
7. \texttt{| (new B:bitstring; out(c,B))}

The query \texttt{query event(e(new a[x=A;y=new B]))} tests whether event \texttt{e} can be executed with argument \texttt{a} a name created by the restriction \texttt{new a:bitstring} when \texttt{x} is \texttt{A} and \texttt{y} is a name created by the restriction \texttt{new B:bitstring}. In the example process, such an event can be executed.

Furthermore, in addition to the value of the variables defined above the considered restriction \texttt{new}, one can also specify the value of \texttt{!i}, which represents the session identifier associated with the \texttt{i}-th replication above the considered \texttt{new}, where \texttt{i} is a positive integer. (Replications are numbered from the top of the process: \texttt{!1} corresponds to the first replication at the top of the syntax tree.) These session identifiers take a different value in each copy of the process created by the replication. It does not make much sense to give a non-variable value to these session identifiers, but they can be useful to designate names created in the same copy or in different copies of the process. Consider the following example:

1. \texttt{free c:channel.}
2. \texttt{event e(bitstring,bitstring).}
3. \texttt{query i:sid; event(e(new A[!1 = i], new B[!1 = i])).}
4. \texttt{process}
5. \texttt{(in(c,(y:bitstring,x:bitstring));event e(x,y))}
6. \texttt{| ! (new A: bitstring; new B:bitstring; out(c,(A,B)))}

The query \texttt{event(e(new A[!1 = i], new B[!1 = i]))} tests if one can execute events \texttt{e(x,y)} where \texttt{x} is a name created at the restriction \texttt{new A:bitstring} and \texttt{y} is a name created at \texttt{new B:bitstring} in the same copy as \texttt{x} (of session identifier \texttt{i}).

It is also possible to use \texttt{let} bindings in queries: \texttt{let x = M in} binds the term \texttt{M} to \texttt{x} inside a query. Such bindings can be used anywhere in a query: they are added to queries, hypotheses, and facts in the grammar of correspondence assertions given in Figure 4.2. In such bindings, the term \texttt{M} must be a term without destructor. These bindings are specially useful in the presence of references to bound names. For instance, in the query \texttt{query attacker(h((new n,new n)))}, the two occurrences of \texttt{new n} may represent different names created at the same restriction \texttt{new n}:t in the process. In contrast, in the query \texttt{query let x = new n in attacker(h((x,x)))}, \texttt{x} represents any name created at the restriction \texttt{new n}:t and (\texttt{x,x}) is a pair containing twice the same name. Let bindings \texttt{let x = M in} therefore allow us to designate several times exactly the same value, even if the term \texttt{M} may designate several possible values due to the use of the \texttt{new n} construct.

References to bound names in queries were used, for instance, in [BC08].
6.1.3 Exploring correspondence assertions

ProVerif allows the user to examine which events must be executed before reaching a state that falsifies the current query. The syntax `putbegin event:e` instructs ProVerif to test which events `e(...)` are needed in order to falsify the current query. This means that when an event `e` needs to be executed to trigger another action, a begin fact `begin(e(...))` is going to appear in the hypothesis of the corresponding clause. This is useful when the exact events that should appear in a query are unknown. For instance, with the query

```
query x:bitstring; putbegin event:e; event(e'(x)).
```

ProVerif generates clauses that conclude `end(e'(M))` (meaning that the event `e'` has been executed), and by manual inspection of the facts `begin(e(M'))` that occur in their hypothesis, one can infer the full query:

```
query x1:t1,...,xn:tn; event(e'(...)) --> event(e(...)).
```

As an example, let us consider the process:

```plaintext
1 free c:channel.
2 fun h(bitstring):bitstring.
3
4 event e(bitstring).
5 event e'(bitstring).
6
7 query x:bitstring; putbegin event:e; event(e'(x)).
8
9 process
10 new s:bitstring;
11 (
12 event e(s);
13 out(c,h(s))
14) | (
15 in(c,=h(s));
16 event e'(h(s))
17)
```

ProVerif produces the output:

```
...
— Query putbegin event:e; not event(e'(x_5))
Completing...
Starting query not event(e'(x_5))
goal reachable: begin(e(s_4[])) --> end(e'(h(s_4[])))
...
```

We can infer that the following correspondence assertion is satisfied by the process:

```
query x:bitstring; event(e'(h(x))) --> event(e(x)).
```

This technique has been used in the verification of a certified email protocol, which can be found in subdirectory `examples/pitype/certified-mail-AbadiGlewHornePinkas/`.

6.2 ProVerif options

In this section, we discuss the command-line arguments and settings of ProVerif. The default behavior of ProVerif has been optimized for standard use, so these settings are not necessary for basic examples.
6.2.1 Command-line arguments

The syntax for the command-line is

```
proverif [options] (filename)
```

where `proverif` is ProVerif's binary, `(filename)` is the input file, and the command-line parameters `[options]` are of the following form:

- **-in [format]**
  Choose the input format (`horn`, `horntype`, `pi`, or `pitype`). When the `-in` option is absent, the input format is chosen according to the file extension, as detailed below. The input format described in this manual is the typed pi calculus, which corresponds to the option `-in pitype`, and is the default when the file extension is `.pv`. We recommend using this format. The other formats are no longer actively developed. Input may also be provided using the untyped pi calculus (option `-in pi`, the default when the file extension is `.pi`), typed Horn clauses (option `-in horntype`, the default when the file extension is `.horntype`), and untyped Horn clauses (option `-in horn`, the default for all other file extensions). The untyped Horn clauses and the untyped pi calculus input formats are documented in the file `docs/manual-untyped.pdf`.

- **-out [format]**
  Choose the output format, either `solve` (analyze the protocol) or `spass` (stop the analysis before resolution, and output the clauses in the format required for use in the Spass first-order theorem prover, see `http://www.spass-prover.org/`). The default is `solve`. When you select `-out spass`, you must add the option `-o [filename]` to specify the file in which the clauses will be output.

- **-TulaFale [version]**
  For compatibility with the web service analysis tool TulaFale (see the tool download at `http://research.microsoft.com/projects/samoa/`). The version number is the version of TulaFale with which you would like compatibility. Currently, only version 1 is supported.

- **-lib [filename]**
  Specify a particular library file. Library files may contain declarations (including process macros). They are therefore useful for code reuse. Library files must be given the file extension `.pvl`, and this must be omitted from `[filename]`. For example, the library file `crypto.pvl` would be specified as `-lib crypto`. This option is intended for compatibility with CryptoVerif.

- **-color**
  Display a colored output on terminals that support ANSI color codes. (Will result in a garbage output on terminals that do not support these codes.) Unix terminals typically support ANSI color codes. For emacs users, you can run ProVerif in a shell buffer with ANSI color codes as follows:

  - start a shell with `M-x shell`
  - load the `ansi-color` library with `M-x load-library RET ansi-color RET`
  - activate ANSI colors with `M-x ansi-color-for-comint-mode-on`
  - now run ProVerif in the shell buffer

  You can also activate ANSI colors in shell buffers by default by adding the following to your `.emacs`:

  ```lisp
 (autoload 'ansi-color-for-comint-mode-on "ansi-color" nil t)
 (add-hook 'shell-mode-hook 'ansi-color-for-comint-mode-on)
  ```

- **-html [directory]**
  Generates HTML output in the specified directory. That directory must already exist. ProVerif may overwrite files in that directory, so you should create a fresh directory the first time you use this option. You may use the same directory for several runs of ProVerif if you do not want to keep the output of previous runs.
ProVerif includes a CSS file `cssproverif.css` in the main directory of the distribution. You should copy that file to `[directory]`. You may edit it to suit your preferences if you wish.

After running ProVerif, you should open the file `[directory]/index.html` with your favorite web browser to display the results.

- `-help` or `--help`
  Display a short summary of command-line options

6.2.2 Settings

The manner in which ProVerif performs analysis can be modified by the use of parameters defined in the form `set ⟨name⟩ = ⟨value⟩`. The parameters below are supported, where the default value is the first mentioned. ProVerif also accepts `no` instead of `false` and `yes` instead of `true`.

Attacker configuration settings.

- `set ignoreTypes = true.` (or  `set ignoreTypes = all.`)
  `set ignoreTypes = false.` (or `set ignoreTypes = none.` or `set ignoreTypes = attacker.` for backward compatibility)

  Indicates how ProVerif behaves with respect to types. By default (`set ignoreTypes = true.`), ProVerif ignores types; that is, the semantics of processes ignores types: the attacker may build and send ill-typed terms and the processes do not check types. This setting allows ProVerif to detect type flaw attacks. With the setting (`set ignoreTypes = false.`), the protocol respects the type system. In practice, protocols can be implemented to conform to this setting by making sure that the type converter functions and the tuples are correctly implemented: the result of a type converter function must be different from its argument, different from values of the same type obtained without applying the type converter function, and must identify which type converter function was applied, and this information must be checked upon pattern-matching; a tuple must contain the type of its arguments together with their value, and this type information must also be checked upon pattern-matching. Provided there is a single type converter function from one type to another, this can be implemented by adding a tag that represents the type to each term, and checking in processes that the tags are correct. The attacker may change the tag in clear terms (but not under an encryption or a signature, for instance). However, that does not allow it to bypass the type system. (Processes will never inspect inside values whose content does not match the tag.)

  Note that static typing is always enforced; that is, user-defined input files must always be well-typed and ProVerif will report any type errors.

  When types are ignored (`set ignoreTypes = true.`), functions marked `typeConverter` are removed when generating Horn clauses, so that you get exactly the same clauses as if the `typeConverter` function was absent. (In other words, such functions are the identity when types are ignored.)

  When types are taken into account, the state space is smaller, so the verification is faster, but on the other hand fewer attacks are found. Some examples do not terminate with `set ignoreTypes = true`, but terminate with `set ignoreTypes = false`.

- `set attacker = active.`
  `set attacker = passive.`

  Indicates whether the attacker is active or passive. An active attacker can read messages, compute, and send messages. A passive attacker can read messages and compute but not send messages.

- `set keyCompromise = none.`
  `set keyCompromise = approx.`
  `set keyCompromise = strict.`

  By default (`set keyCompromise = none.`), it is assumed that session keys and more generally the session secrets are not a priori compromised. (The session secrets are all the names bound under
6.2. PROVERIF OPTIONS

a replication.) Otherwise, it is assumed that the session secrets of some sessions are compromised, that is, known by the adversary. Then ProVerif determines whether the secrets of other sessions can be obtained by the adversary. In this case, the names that occur in queries always refer to names of non-compromised sessions (the attacker has all names of compromised sessions), and the events that occur before an arrow $\rightarrow$ in a query are executed only in non-compromised sessions. With `set keyCompromise = approx.`, the compromised sessions are considered as executing possibly in parallel with non-compromised ones. With `set keyCompromise = strict.`, the compromised sessions are finished before the non-compromised ones begin. The chances of finding an attack are greater with `set keyCompromise = approx.` (It may be a false attack due to the approximations made in the verifier.) Key compromise is incompatible with attack reconstruction; moreover, phases cannot be used with the key compromise parameter enabled, because key compromise introduces a two-phase process.

Rather than using this setting, we recommend encoding the desired key compromise directly in the process that models the protocol, by outputting the compromised secrets on a public channel.

Simplification of processes

- `set simplifyProcess = true.`
  `set simplifyProcess = false`.
  `set simplifyProcess = interactive`.

This setting is useful for proofs of observational equivalences with `choice`. With the setting `set simplifyProcess = true`, in case ProVerif fails to prove the desired equivalence, it tries to simplify the given biprocess and to prove the desired property on the simplified process, which increases its chances of success. With the setting `set simplifyProcess = false`, ProVerif does not compute the simplified biprocesses. With the setting `set simplifyProcess = interactive`, an interactive menu appears when ProVerif fails to prove the equivalence on the input biprocess. This menu allows one to either view the different simplified biprocesses or to select one of the simplified biprocesses for ProVerif to prove the equivalence.

- `set rejectChoiceTrueFalse = true`.
  `set rejectChoiceTrueFalse = false`.

With the setting `set rejectChoiceTrueFalse = true`, ProVerif does not try to prove observational equivalence for simplified processes that still contain tests `if choice[true, false] then`, because the observational equivalence proof has little chance of succeeding in this case. With the setting `set rejectChoiceTrueFalse = false`, ProVerif still tries to observational equivalence for simplified processes that still contain tests `if choice[true, false] then`.

- `set rejectNoSimplif = true`.
  `set rejectNoSimplif = false`.

With the setting `set rejectNoSimplif = true`, ProVerif does not try to prove observational equivalence for simplified processes, when simplification has not managed to merge at least two branches of a test or to decompose a `let f (...) = f (...) in`. With the setting `set rejectNoSimplif = false`, ProVerif still tries to observational equivalence for these processes.

Verification of predicate definitions

- `set predicatesImplementable = check`.
  `set predicatesImplementable = nocheck`.

Sets whether ProVerif should check that predicate calls are implementable. See Section 6.1.1 for more details on this check. It is advised to leave the check turned on, as it is by default. Otherwise, the semantics of the processes may not be well-defined.
Performance and termination settings. The performance settings may result in more false attacks, but they never sacrifice soundness. It follows that when ProVerif says that a property is satisfied, then the model really does guarantee that property, regardless of how ProVerif has been configured using the settings presented here.

- **set movenew = false.**
  - **set movenew = true.**

Sets whether ProVerif should try to move restrictions under inputs, to have a more precise analysis (**set movenew = true.**), or leave them where the user has put them (**set movenew = false.**). Internally, ProVerif represents fresh names by functions of the variables bound above the `new`. Adjusting these arguments allows one to change the precision of the analysis: the more arguments are included, the more precise the analysis is, but also the more costly in general. The setting (**set movenew = true.**) yields the most precise analysis. You can fine-tune the precision of the analysis by keeping the default setting and moving `new`s manually in the input process.

- **set maxDepth = none.**
  - **set maxDepth = n.**

Do not limit the depth of terms (none) or limit the depth of terms to `n`, where `n` is an integer. A negative value means no limit. When the depth is limited to `n`, all terms of depth greater than `n` are replaced with new variables. (Note that this makes clauses more general.) Limiting the depth can be used to enforce termination of the solving process, at the cost of precision. This setting is not recommended: it often causes too much imprecision. Using `nounif` (see Section 6.3.1) is delicate but may be more successful in practice.

- **set maxHyp = none.**
  - **set maxHyp = n.**

Do not limit the number of hypotheses of clauses (none) or limit it to `n`, where `n` is an integer. A negative value means no limit. When the number of hypotheses is limited to `n`, arbitrary hypotheses are removed from clauses, so that only `n` hypotheses remain. Limiting the number of hypotheses can be used to enforce termination of the solving process at the cost of precision (although in general limiting the depth by the above declaration is enough to obtain termination). This setting is not recommended.

- **set selFun = TermMaxsize.**
  - **set selFun = Term.**
  - **set selFun = NounifsetMaxsize.**
  - **set selFun = Nounifset.**

Chooses the selection function that governs the resolution process. All selection functions avoid unifying on facts indicated by a `nounif` declaration (see Section 6.3.1). Nounifset does exactly that. Term automatically avoids some other unifications, to help termination, as determined by some heuristics. NounifsetMaxsize and TermMaxsize choose the fact of maximum size when there are several possibilities. This choice sometimes gives impressive speedups.

When the selection function is set to Nounifset or NounifsetMaxsize; ProVerif will display a warning, and wait for a user response, when ProVerif thinks the solving process will not terminate. This behavior can be controlled by the following additional setting.

- **set stopTerm = true.**
  - **set stopTerm = false.**

Display a warning and wait for user answer when ProVerif thinks the solving process will not terminate (true), or go on as if nothing had happened (false). (We reiterate that these settings are only available when the selection function is set to either Nounifset or NounifsetMaxsize.)

- **set redundancyElim = simple.**
  - **set redundancyElim = no.**
  - **set redundancyElim = best.**
An elimination of redundant clauses has been implemented: when a clause without selected hypotheses is derivable from other clauses without selected hypothesis, it is removed. With redundancyElim = simple, this is applied for newly generated clauses. With redundancyElim = no, this is never applied. With redundancyElim = best, this is also applied when an old clause can be derived from other old clauses plus the new clause.

Detecting redundant clauses takes time, but redundancy elimination may also speed up the resolution when it eliminates clauses and simplify the final result of ProVerif. The consequences on speed depend on the considered protocol; the default (set redundancyElim = simple.) is a reasonable tradeoff for most examples.

- set redundantHypElim = beginOnly.
  set redundantHypElim = false.
  set redundantHypElim = true.

When a clause is of the form \( H \land H' \rightarrow C \), and there exists \( \sigma \) such that \( \sigma H \subseteq H' \) and \( \sigma \) does not change the variables of \( H' \) and \( C \), then the clause can be replaced with \( H' \rightarrow C \) (since there are implications in both directions between these clauses).

This replacement is done when redundantHypElim is set to true, or when it is set to beginOnly and \( H \) contains a begin fact (which is generated when events occur after \( == \) in a query) or a blocking fact. Indeed, testing this property takes time, and slows down small examples. On the other hand, on big examples, in particular when they contain many events (or blocking facts), this technique can yield huge speedups.

- set eqInNames = false.
  set eqInNames = true.

This setting will probably not be used by most users. It influences the arguments of the functions that represent fresh names internally in ProVerif. When eqInNames = false, these arguments consist of variables defined by inputs, indices associated to replications, and terms that contain destructors defined by several rewrite rules, but do not contain other computed terms since their value is fixed knowing the arguments already included. When eqInNames = true, these arguments additionally include terms that contain constructors associated with several rewrite rules due to the equational theory. Because of these several rewrite rules, these terms may reduce to several syntactically different terms, which are all equal modulo the equational theory. In some rare examples, eqInNames = true speeds up the analysis because equality of the fresh names then implies that these terms are syntactically equal, so fewer clauses are considered. However, for technical reasons, eqInNames = true is incompatible with attack reconstruction.

- set expandIfTermsToTerms = false.
  set expandIfTermsToTerms = true.

This setting modifies the expansion of terms if ... then ... else .... By default (with the setting set expandIfTermsToTerms = false.), they are expanded into processes. With the setting set expandIfTermsToTerms = true., terms if ... then ... else ... are transformed into terms that use a special destructor to represent the test. The latter transformation is more precise when proving observational equivalence with choice, but leads to a very slow generation of the clauses for some examples.

Attack reconstruction settings.

- set simplifyDerivation = true.
  set simplifyDerivation = false.

Should the derivation be simplified by removing duplicate proofs of the same attacker facts?

- set abbreviateDerivation = true.
  set abbreviateDerivation = false.

When abbreviateDerivation = true, ProVerif defines symbols to abbreviate terms that represent names \( a[. . .] \) before displaying the derivation, and uses these abbreviations in the derivation. These abbreviations generally make the derivation easier to read by reducing the size of terms.
• \texttt{set} explainDerivation = true.
  \texttt{set} explainDerivation = false.

  When explainDerivation = true, ProVerif explains in English each step of the derivation (returned in case of failure of a proof). This explanation refers to program points in the given process. When explainDerivation = false, it displays the derivation by referring to the clauses generated initially.

• \texttt{set} reconstructTrace = true.
  \texttt{set} reconstructTrace = false.

  With \texttt{set} reconstructTrace = true., when a query cannot be proved, the tool tries to build a pi calculus execution trace that is a counter-example to the query [AB05c].

  This feature is currently incompatible with key compromise (that is, when keyCompromise is set to either approx or strict).

  Moreover, for \texttt{noninterf} and \texttt{choice}, it reconstructs a trace, but this trace may not always prove that the property is wrong: for \texttt{noninterf}, it reconstructs a trace until a program point at which the process behaves differently depending on the value of the secret (takes a different branch of a test, for instance), but this different behavior is not always observable by the adversary; similarly, for \texttt{choice}, it reconstructs a trace until a program point at which the process using the first argument of \texttt{choice} behaves differently from the process using the second argument of \texttt{choice}.

  For injective queries, the trace reconstruction proceeds in two steps. In the first step, it reconstructs a trace that corresponds to the derivation found by resolution. This trace generally executes events once, so does not contradict injectivity. In a second step, it tries to reconstruct a trace that executes certain events twice while it executes other events once, in such a way that injectivity is really contradicted. This second step may fail even when the first one succeeds. For non-injective queries (including secrecy), when a trace is found, it is a counter-example to the query, which is then false.

• \texttt{set} unifyDerivation = true.
  \texttt{set} unifyDerivation = false.

  When set to true, activates a heuristic that increases the chances of finding a trace that corresponds to a derivation. This heuristic unifies messages received by the same input (same occurrence and same session identifiers) in the derivation. Indeed, these messages must be equal if the derivation corresponds to a trace.

• \texttt{set} reconstructDerivation = true.
  \texttt{set} reconstructDerivation = false.

  When a fact is derivable, should we reconstruct the corresponding derivation? (This setting has been introduced because in some extreme cases reconstructing a derivation can consume a lot of memory.)

• \texttt{set} displayDerivation = true.
  \texttt{set} displayDerivation = false.

  Should the derivation be displayed? Disabling derivation display is useful for very big derivations.

• \texttt{set} traceBacktracking = true.
  \texttt{set} traceBacktracking = false.

  Allow or disable backtracking when reconstructing traces. In most cases, when traces can be found, they are found without backtracking. Disabling backtracking makes it possible to display the trace during its computation, and to forget previous states of the trace. This reduces memory consumption, which can be necessary for reconstructing very big traces.

**Display settings.**

• \texttt{set} traceDisplay = short.
  \texttt{set} traceDisplay = long.
  \texttt{set} traceDisplay = none.
Choose the format in which the trace is displayed after trace reconstruction. By default (traceDisplay = short.), outputs the labels of a labeled reduction. With set traceDisplay = long., outputs the current state before each input and before and after each I/O reduction, as well as the list of all executed reductions. With set traceDisplay = none., the trace is not displayed.

- set verboseClauses = none.
  set verboseClauses = explained.
  set verboseClauses = short.

  When verboseClauses = none, ProVerif does not display the clauses it generates. When verboseClauses = short, it displays them. When verboseClauses = explained, it adds an English sentence after each clause it generates to explain where this clause comes from.

- set abbreviateClauses = true.
  set abbreviateClauses = false.

  When abbreviateClauses = true, ProVerif defines symbols to abbreviate terms that represent names a[...] and uses these abbreviations in the display of clauses. These abbreviations generally make the clauses easier to read by reducing the size of terms.

- set removeUselessClausesBeforeDisplay = true.
  set removeUselessClausesBeforeDisplay = false.

  When removeUselessClausesBeforeDisplay = true, ProVerif removes subsumed clauses and tautologies from the initial clauses before displaying them, to avoid showing many useless clauses. When removeUselessClausesBeforeDisplay = false, all generated clauses are displayed.

- set verboseEq = true.
  set verboseEq = false.

  Display information on handling of equational theories when true.

- set verboseTerm = true.
  set verboseTerm = false.

  Display information on termination when true (changes in the selection function to improve termination; termination warnings).

- set verboseRules = false.
  set verboseRules = true.

  Display the number of clauses every 200 clause created during the solving process (false) or display each clause created during the solving process (true).

- set verboseRedundant = false.
  set verboseRedundant = true.

  Display eliminated redundant clauses when true.

- set verboseCompleted = false.
  set verboseCompleted = true.

  Display completed set of clauses after saturation when true.

6.3 Theory and tricks

In this section, we discuss tricks to get the most from ProVerif for advanced users. These tricks may improve performance and aid termination. We also propose alternative ways to encode protocols and pi calculus encodings for some standard features. We also detail sources of incompleteness of ProVerif, for a better understanding of when and why false attacks happen.

User tricks. You are invited to submit your own ProVerif tricks, which we may include in future revisions of this manual.
6.3.1 Performance and termination

Secrecy assumptions

Secrecy assumptions may be added to ProVerif scripts in the form:

\texttt{not \ x_1: t_1, \ldots, x_n: t_n; \ F.}

which states that \( F \) cannot be derived, where \( F \) can be a fact \( \text{attacker}(M) \), \( \text{attacker}(M) \ \text{phase} \ n \), \( \text{mess}(N, M) \), \( \text{mess}(N, M) \ \text{phase} \ n \), \( \text{table}(d(M_1, \ldots, M_n)) \), \( \text{table}(d(M_1, \ldots, M_n)) \ \text{phase} \ n \) as defined in Figure 4.2 or a user-defined predicate \( p(M_1, \ldots, M_k) \) (see Section 6.1.1). When \( F \) contains variables, the secrecy assumption \texttt{not \ x_1: t_1, \ldots, x_n: t_n; \ F.} means that no instance of \( F \) is derivable.

ProVerif can then optimize its internal clauses by removing clauses that contain \( F \) in hypotheses, thus simplifying the clause set and resulting in a performance advantage. The use of secrecy assumptions preserves soundness because ProVerif also checks that \( F \) cannot be derived; if it can be derived, ProVerif fails with an error message. Secrecy assumptions can be extended using the binding \texttt{let \ x = M in} and bound names designated by \texttt{new a[.\ldots]} as discussed in Section 6.1.2; these two constructs are allowed as part of \( F \).

The name “secrecy assumptions” comes from the particular case

\texttt{not \ \text{attacker}(M).}

which states that \( \text{attacker}(M) \) cannot be derived, that is, \( M \) is secret.

Grouping queries

Queries may also be stated in the form:

\texttt{query \ x_1: t_1, \ldots, x_m: t_m; \ q_1; \ldots; q_n.}

where each \( q_i \) is a query as defined in Figure 4.2, or a \texttt{putbegin} declaration (see Section 6.1.3). A single \texttt{query} declaration containing \( q_1; \ldots; q_n \) is evaluated by building one set of clauses and performing resolution on it, whilst independent query declarations

\texttt{query \ x_1: t_1, \ldots, x_m: t_m; \ q_1.}

\texttt{...}

\texttt{query \ x_1: t_1, \ldots, x_m: t_m; \ q_n.}

are evaluated by rebuilding a new set of clauses from scratch for each \( q_i \). So the way queries are grouped influences the sharing of work between different queries, and therefore performance. For optimization, one should group queries that involve the same events; but separate queries that involve different events, because the more events that appear in the query, the more complex the generated clauses are, which can slow down ProVerif considerably, especially on complex examples. If one does not want to optimize, one can simply put a single query in each \texttt{query} declaration.

Tuning the resolution strategy.

The resolution strategy can be tuned using

\texttt{nounif \ x_1: t_1, \ldots, x_k: t_k; \ F.}

where the fact \( F \) can be \( \text{attacker}(M) \), \( \text{attacker}(M) \ \text{phase} \ n \), \( \text{mess}(N, M) \), \( \text{mess}(N, M) \ \text{phase} \ n \), \( \text{table}(d(M_1, \ldots, M_n)) \), \( \text{table}(d(M_1, \ldots, M_n)) \ \text{phase} \ n \) as defined in Figure 4.2 or a user-defined predicate \( p(M_1, \ldots, M_k) \) (see Section 6.1.1), and \( F \) can also include the construct \texttt{new a[.\ldots]} to designate bound names and let bindings \texttt{let \ x = M in} (see Section 6.1.2). The declaration \texttt{nounif \ F} prevents ProVerif from resolving upon facts that match \( F \): \( F \) may contain two kinds of variables: ordinary variables match only variables, while star variables, of the form \( *x \) where \( x \) is a variable name, match any term. The \texttt{nounif} declaration can be labeled with an optional integer \( n \)

\texttt{nounif \ x_1: t_1, \ldots, x_k: t_k; \ F/n.}
The selection functions work as follows:

where \( name \) is the name of the selection function, which can be chosen by \( \text{set selFun = name.} \), where \( name \) is the name of the selection function, \( \text{Nounifset, NounifsetMaxsize, Term, or TermMaxsize.} \)

The selection functions work as follows:

- Hypotheses of the form \( p(\ldots) \) when \( p \) is declared with option \( \text{block} \) and internal predicates begin and testunif are unselectable. (The predicate testunif is handled by a specific internal treatment. The predicates \( \text{block} \) and \( \text{begin} \) have no clauses that conclude them; the goal is to produce a result valid for any definition of these predicates, so they must not be selected.)

The conclusion \( \text{bad} \) is also unselectable. (The goal is to determine whether \( \text{bad} \) is derivable, so we should select a hypothesis if there is some, to determine whether the hypothesis is derivable.)

Facts \( p(x_1, \ldots, x_n) \) when \( p \) is an internal predicate attacker or \( \text{comp} \), and facts that unify with the conclusions \( F \) of equivalences

\[
\forall x_1 : t_1, \ldots, x_n : t_n ; \quad F_1 \land \ldots \land F_m \equiv \equiv F
\]

are also unselectable. (Due to data-decomposition clauses, selecting such facts would lead to non-termination.)

Unselectable hypotheses are never selected. An unselectable conclusion is selected only when all hypotheses are unselectable (or there is no hypothesis).

- If there is a selectable literal, the selection function selects the literal of maximum weight among the selectable literals. In case several literals have the maximum weight, the conclusion is selected in priority if it has the maximum weight, then the first hypothesis with maximum weight is selected. The weight of each literal is determined as follows:
  - If the selection function is Term or TermMaxsize (the default), and a hypothesis is a \emph{looping instance} of the conclusion, then the conclusion has weight \(-7000\). (A fact \( F \) is a \emph{looping instance} of a fact \( F' \) when there is a substitution \( \sigma \) such that \( F = \sigma F' \) and \( \sigma \) maps some variable \( x \) to a term that contains \( x \) and is not a variable. In this case, repeated instantiations of \( F' \) by \( \sigma \) generate an infinite number of distinct facts \( \sigma^n F' \).) The goal has weight \(-3000\). (The goal is the fact for which we want to determine whether it is derivable or not. It appears has a conclusion in the second stage of ProVerif’s resolution algorithm.) In all other cases, the conclusion has weight \(-1\).
  - If the selection function is Term or TermMaxsize (the default), and the conclusion is a looping instance of a hypothesis, then this hypothesis has weight \(-7000\).
  - Hypotheses that match a \emph{nounif} declaration internally have weight \(-n\) when the \emph{nounif} declaration is labeled with the integer \( n \). By default, when \( n \) is not mentioned, they have weight \(-6000\). The minimum weight that can be set by \emph{nounif} is \(-9999\). If \( n \leq -10000 \), the weight will be set to \(-9999\).
  - All other hypotheses have as weight their size with the selection functions TermMaxsize (the default) and NounifsetMaxsize. They have weight 0 with the selection functions Term and Nounifset.

- If the selection function is Term or TermMaxsize (the default) and the conclusion is selected in a clause, then for each hypothesis \( F \) of that clause such that the conclusion \( C \) is a looping instance of \( F \) (\( C = \sigma F \)), a \emph{nounif} declaration with weight \(-5000\) is automatically added for facts \( \sigma' F \) where \( \sigma \) and \( \sigma' \) have disjoint supports. (If \( \sigma x \) is not a variable, then \( \sigma' x \) must be a variable.)
The selection functions Term and TermMaxsize try to favor termination by auto-detecting loops and tuning the selection function to avoid them. For instance, suppose that the conclusion is a looping instance of a hypothesis, so the clause is of the form \( H \&\& F \rightarrow \sigma F \).

- Assume that \( F \) is selected in this clause, and there is a clause \( H' \rightarrow F' \), where \( F' \) unifies with \( F \), and the conclusion is selected in \( H' \rightarrow F' \). Let \( \sigma' \) be the most general unifier of \( F \) and \( F' \). So the algorithm generates:
  \[
  \sigma'H' \&\& \sigma'H \rightarrow \sigma'\sigma F \\
  \ldots \\
  \sigma'H' \&\& \sigma'H \&\& \ldots \&\& \sigma'\sigma^{n-1}H \rightarrow \sigma'\sigma^n F
  \]
  assuming that the conclusion is selected in all these clauses, and that no clause is removed because it is subsumed by another clause. So the algorithm would not terminate. Therefore, in order to avoid this situation, we should avoid selecting \( F \) in the clause \( H \&\& F \rightarrow \sigma F \). That is why we give \( F \) weight \(-7000\) in this case. A symmetric situation happens when a hypothesis is a looping instance of the conclusion, so we give weight \(-7000\) to the conclusion in this case.

- Assume that the conclusion is selected in the clause \( H \&\& F \rightarrow \sigma F \), and there is a clause \( H' \&\& \sigma'F \rightarrow C \) (up to renaming of variables), where \( \sigma' \) commutes with \( \sigma \) (in particular, when \( \sigma \) and \( \sigma' \) have disjoint supports), and that \( \sigma'F \) is selected in this clause. So the algorithm generates:
  \[
  \sigma'H \&\& \sigma'H \&\& \sigma'F \rightarrow \sigma'C \\
  \ldots \\
  \sigma'H \&\& \sigma'H \&\& \ldots \&\& \sigma'\sigma^{n-1}H \&\& \sigma^nH' \&\& \sigma'F \rightarrow \sigma^nC
  \]
  assuming that \( \sigma'F \) is selected in all these clauses, and that no clause is removed because it is subsumed by another clause. So the algorithm would not terminate. Therefore, in order to avoid this situation, if the conclusion is selected in the clause \( H \&\& F \rightarrow \sigma F \), we should avoid selecting facts of the form \( \sigma'F \), where \( \sigma' \) and \( \sigma \) have disjoint supports, in other clauses. That is why we automatically add a nounif declaration for these facts.

Obviously, these heuristics do not avoid all loops. One can use manual nounif declarations to tune the selection function further. One typically uses set verboseRules = true. to display the clauses generated by ProVerif. One can then observe the loops that occur, and one can try to avoid them by using a nounif declaration that prevents the selection of the literal that causes the loop. By default, the weight of manual nounif declarations is such that they have priority over automatic nounif declarations, but they have lower priority than situations in which the conclusion is a looping instance of a hypothesis or conversely. One can adjust the weight manually to obtain different priority levels.

The selection functions TermMaxsize and NounifSetMaxsize preferably select large facts. This can yield important speed-ups for some examples.

**Tagged protocols**

A typical cause of non-termination of ProVerif is the existence of loops inside protocols. Consider for instance a protocol with the following messages:

- \( B \rightarrow A: \text{senc}(Nb, k) \)
- \( A \rightarrow B: \text{senc}(f(Nb), k) \)

(This example is inspired from the Needham-Schroeder shared-key protocol.) Suppose that \( A \) does not know the value of \( Nb \) (nonce generated by \( B \)). In this case, in \( A \)'s role, \( Nb \) is a variable. Then, the adversary can send the second message to \( A \) as if it were the first one, and obtain as reply \( \text{senc}(f(f(Nb), k)) \), which can itself be sent as if it were the first message, and so on, yielding to a loop that generates \( \text{senc}(f^n(Nb), k) \) for any integer \( n \).

A way to avoid such loops is to add tags. A tag is a distinct constant for each application of a cryptographic primitive (encryption, signatures, . . .) in the protocol. Instead of applying the primitive just to the initial message, one applies it to a pair containing a tag and the message. For instance, after adding tags, the previous example becomes:
After adding tags, the second message cannot be mixed with the first one because of the different tags \(c_0\) and \(c_1\), so the previous loop is avoided. More generally, one can show that ProVerif always terminates for tagged protocols (modulo some restrictions on the primitives in use and on the properties that are proved) [BP05], [Bla09, Section 8.1]. Adding tags is a good design practice [AN96]: the tags facilitate the parsing of messages, and they also prevent type-flaw attacks (in which messages of different types are mixed) [HLS00]. Tags are used in some practical protocols such as SSH. However, if one verifies a protocol with tags, one should implement the protocol with these tags: the security of the tagged protocol does not imply the security of the untagged version.

### Position and arguments of new

Internally, fresh names created by \texttt{new} are represented as functions of the inputs located above that \texttt{new}. So, by moving \texttt{new} upwards or downwards, one can influence the internal representation of the names and tune the performance and precision of the analysis. Typically, the more the \texttt{new} are moved downwards in the process, the more precise and the more costly the analysis is. (There are exceptions to this general rule, see for example the end of Section 5.4.2.)

The setting \texttt{set movenew = true.} allows one to move \texttt{new} automatically downwards, potentially yielding a more precise analysis. By default, the \texttt{new} are left where they are, so the user can manually tune the precision of the analysis. Furthermore, it is possible to indicate explicitly at each replication which variables should be included as arguments in the internal representation of the corresponding fresh name: inside a process

\[
\texttt{new } a \left[ x_1, \ldots, x_n \right] : t
\]

means that the internal representation of names created by that restriction is going to include \(x_1, \ldots, x_n\) as arguments. In any case, the internal representation of names always includes session identifiers (necessary for soundness) and variables needed to answer queries. These annotations are ignored in the case of observational equivalence proof between two processes (keyword \texttt{equivalence}) or when the biprocess is simplified before an observational equivalence proof. (Otherwise, the transformations of the processes might be prevented by these annotations.)

In general, we advise generating the fresh names by \texttt{new} when they are needed. Generating all fresh names at the beginning of the protocol is a bad idea: the names will essentially have no arguments, so ProVerif will merge all of them and the analysis will be so imprecise that it will not be able to prove anything. On the other hand, if the \texttt{new} take too many arguments, the analysis can become very costly or even not terminate. By the setting \texttt{set verboseRules = true.}, one can observe the clauses generated by ProVerif; if these clauses contain names with very large arguments that grow more and more, moving \texttt{new} upwards or giving an explicit list of arguments to remove some arguments can improve the speed of ProVerif or make it terminate. The size of the arguments of names associated with random coins is the reason of the cost of the analysis in the presence of probabilistic encryption (see Section 4.2.3). When one uses function macros to represent encryption, one cannot easily move the \texttt{new} upwards. If needed, we advise manually expanding the encryption macro and moving the \texttt{new} that comes from this macro upwards or giving it explicit arguments.

### 6.3.2 Alternative encodings of protocols

#### Key distribution

In Section 4.1.4, we introduced tables and demonstrated their application for key distribution with respect to the Needham-Schroeder public key protocol (Sections 5.2 and 5.3). There are three further noteworthy key distribution methods which we will now discuss.

1. \textit{Key distribution by scope}. The first alternative key distribution mechanism simply relies on variable scope and was used in our exemplar handshake protocol and in Section 5.1 without discussion. In this formalism, we simply ensure that the required keys are within the scope of the desired processes.
The main limitation of this encoding is that it does not allow one to establish a correspondence between host names and keys for an unbounded number of hosts.

2. **Key distribution over private channels.** In an equivalent manner to tables, keys may be distributed over private channels.

   • Instead of declaring a table $d$, we declare a private channel by `free cd: channel [private].`
   • Instead of inserting an element, say $(h,k)$, in table $d$, we output an unbounded number of copies of that element on channel $cd$ by `!out(cd, (h,k))`. (The rest of the process should be in parallel with that output so that it does not get replicated as well.)
   • Instead of getting an element, say by `get(d, (=h,k))` to get the key $k$ for host $h$, we read on the private channel $cd$ by `in(cd, (=h,k:key)).`

With this encoding, all keys inserted in the table become available (in an unbounded number of copies) on the private channel $cd$.

We present this encoding as an example of what can be done using private channels. It does not have advantages with respect to using the specific ProVerif constructs for inserting and getting elements of tables.

3. **Key distribution by constructors and destructors.** Finally, as we alluded in Section 3.1.1, private constructors can be used to model the server’s key table. In this case, we make use of the following constructors and associated destructors:

   ```
 type host.
 type skey.
 type pkey.
 fun pk(skey): pkey.
 fun fhost(pkey): host.
 reduc x:pkey; getkey(fhost(x)) = x [private].
   ```

   The constructor `fhost` generates a host name from a public key, while the destructor `getkey` returns the public key from the host name. The constructor `fhost` is public so that the adversary can create host names for the keys it creates. The destructor `getkey` is private; this is not essential for public keys, but when this technique is used with long-term secret keys rather than public keys, it is important that `getkey` be private so that the adversary cannot obtain all secret keys from the (public) host names.

   This technique allows one to model an unbounded number of participants, each with a distinct key. This is however not necessary for most examples: one honest participant for each role is sufficient, the other participants can be considered dishonest and included in the adversary. An advantage of this technique is that it sometimes makes it possible for ProVerif to terminate while it does not terminate with the table of host names and keys used in previous chapters (because host names and keys that are complex terms may be registered by the adversary). For instance, in the file `examples/pitype/choice/NeedhamSchroederPK-corri.pv`, we had to perform key registration in an earlier phase than the protocol in order to obtain termination. Using the `fhost/getkey` encoding, we can obtain termination with a single phase (see `examples/pitype/choice/NeedhamSchroederPK-corri-host-getkey.pv`). However, this encoding also has limitations: for instance, it does not allow the adversary to register several host names with the same key, which is sometimes possible in reality, so this can lead to missing some attacks.

**Bound and private names**

The following three constructs are essentially equivalent: a free name declared by `free n:t`, a constant declared by `const n:t`, and a bound name created by `new n:t` not under any replication in the process. They all declare a constant. However, in queries, bound names must be referred to by `new n` rather than $n$ (see Section 6.1.2). Moreover, from a semantic point of view, it is much easier to define the meaning...
of a free name or a constant in a query than a reference to a bound name. (The bound name can be renamed, and the query is not in the scope of that name.) For this reason, we recommend using free names or constants rather than bound names in queries when possible.

### 6.3.3 Applied pi calculus encodings

The applied pi calculus is a powerful language that can encode many features (including arithmetic!), using private channels and function symbols. ProVerif cannot handle all of these encodings: it may not terminate if the encoding is too complex. It can still take advantage of the power of the applied pi calculus in order to encode non-trivial features. This section presents a few examples.

#### Asymmetric channels

Up to now, we have considered only public channels (on which the adversary can read and write) and private channels (on which the adversary can neither read nor write). It is also possible to encode asymmetric channels (on which the adversary can either read or write, but not both).

- A channel cwrite on which the adversary can write but not read can be encoded as follows: declare cwrite as a private channel by `free cwrite:channel [private]`, and add in your process
  ```
 !in(c, x:t); out(cwrite, x) where c is a public channel. This allows the adversary to send any value of type t on channel cwrite, and can be done for several types if desired. When types are ignored (the default), it in fact allows the adversary to send any value of any type on channel cwrite.
  ```

- A channel cread on which the adversary can read but not write can be encoded as follows: declare cread as a private channel by `free cread:channel [private]`, and add in your process
  ```
 !in(cread, x:t); out(c, x) where c is a public channel. This allows the adversary to obtain any value of type t sent on channel cread, and can be done for several types if desired. As above, when types are ignored, it in fact allows the adversary to obtain any value sent on channel cread.
  ```

#### Memory cell

One can encode a memory cell in which one can read and write. We declare three private channels: one for the cell itself, one for reading and one for writing in the cell.

```
free cell, cread, cwrite: channel [private].
```

and include the following process

```
out(cell, init) |
(!in(cell, x:t); in(cwrite, y:t); out(cell, y)) |
(!in(cell, x:t); out(cread, x); out(cell, x))
```

where t is the type of the content of the cell, and init is its initial value. The current value of the cell is the one available as an output on channel cell. We can then write in the cell by outputting on channel cwrite and read from the cell by reading on channel cread.

We can give the adversary the capability to read and/or write the cell by defining cread as a channel on which the adversary can read and/or cwrite as a channel on which the adversary can write, using the asymmetric channels presented above.

It is important for the soundness of this encoding that one never reads on cwrite or writes on cread, except in the code of the cell itself.

Due to the abstractions performed by ProVerif, such a cell is treated in an approximate way: all values written in the cell are considered as a set, and when one reads the cell, ProVerif just guarantees that the obtained value is one of the written values (not necessarily the last one, and not necessarily one written before the read).
Interface for creating principals

Instead of creating two protocol participants $A$ and $B$, it is also possible to define an interface so that the adversary can create as many protocol participants as he wants with the parameters of its choice, by sending appropriate messages on some channels.

In some sense, the interface provided in the model of Section 5.3 constitutes a limited example of this technique: the attacker can start an initiator that has identity $h_I$ and that talks to responder $h_R$ by sending the message $(h_I, h_R)$ to the first input of $\text{processInitiator}$ and it can start a responder that has identity $h_R$ by sending that identity to the first input of $\text{processResponder}$.

A more complex interface can be defined for more complex protocols. Such an interface has been defined for the JFK protocol, for instance. We refer the reader to [ABF07] (in particular Appendix B.3) and to the files in $\text{examples/pitype/jfk}$ for more information.

6.3.4 Sources of incompleteness

In order to prove protocols, ProVerif translates them internally into Horn clauses. This translation performs safe abstractions that sometimes result in false counterexamples. We detail the main abstractions in this section. We stress that these abstractions preserve soundness: if ProVerif claims that a property is true or false, then this claim is correct. The abstractions only have as a consequence that ProVerif sometimes says that a property “cannot be proved”, which is a “don’t know” answer.

Repetition of actions. The Horn clauses can be applied any number of times, so the translation ignores the number of repetitions of actions. For instance, in the process

$$
\begin{align*}
\textbf{new} & \ k: \text{key}; \quad \textbf{out}(c, \text{senc}(\text{senc}(s,k),k)) ; \\
\textbf{in}(c, \ x: \text{bitstring}); \quad \textbf{out}(c, \text{sdec}(x,k))
\end{align*}
$$

where $c$ is a public channel, $s$ is a private free name which should be kept secret, and $\text{senc}$ and $\text{sdec}$ are symmetric encryption and decryption respectively, ProVerif finds a false attack. It thinks that one can decrypt $\text{senc}(\text{senc}(s,k),k)$ by sending it to the input, so that the process replies with $\text{senc}(s,k)$, and then sending this message again to the input, so that the process replies with $s$. However, this is impossible in reality because the input can be executed only once. The previous process has the same translation into Horn clauses as the process

$$
\begin{align*}
\textbf{new} & \ k: \text{key}; \quad \textbf{out}(c, \text{senc}(\text{senc}(s,k),k)) ; \\
! \textbf{in}(c, \ x: \text{bitstring}); \quad \textbf{out}(c, \text{sdec}(x,k))
\end{align*}
$$

with an additional replication, and the latter process is subject to the attack outlined above.

This approximation is the main approximation made by ProVerif. In fact, for secrecy (and probably also for basic non-injective correspondences), when all channels are public and the fresh names are generated by new as late as possible, this is the only approximation [Bla05].

Position of new. The position of new in the process influences the internal representation of fresh names in ProVerif: fresh names created by new are represented as functions of the inputs located above that new. So the more the new are moved downwards in the process, the more arguments they have, and in general the more precise and the more costly the analysis is. (See also Section 6.3.1 for additional discussion of this point.)

Private channels. Private channels are a powerful tool for encoding many features in the pi calculus. However, because of their power and complexity, they also lead to additional approximations in ProVerif. In particular, when $c$ is a private channel, the process $P$ that follows out($c$, $M$); $P$ can be executed only when some input listens on channel $c$; ProVerif does not take that into account and considers that $P$ can always be executed.

Moreover, ProVerif just computes a set of messages sent on a private channel, and considers that any input on that private channel can receive any of these messages (independently of the order in which they are sent). This point can be considered as a particular case of the general approximation that repetitions of actions are ignored: if a message has been sent on a private channel at some point, it may
be sent again later. Ignoring the number of repetitions of actions then tends to become more important in the presence of private channels than with public channels only.

Let us consider for instance the process

\[
\text{new } c: \text{channel}; \ (\text{out}(c, M) \mid \text{in}(c, x : t); \ \text{in}(c, y : t); \ P)
\]

The process \( P \) cannot be executed, because a single message is sent on channel \( c \), but two inputs must be performed on that channel before being able to execute \( P \). ProVerif cannot take that into account because it ignores the number of repetitions of actions: the process above has the same translation into Horn clauses as the variant with replication

\[
\text{new } c: \text{channel}; \ ((\ !\text{out}(c, M)) \mid \text{in}(c, x : t); \ \text{in}(c, y : t); \ P)
\]

which can execute \( P \).

Similarly, the process

\[
\text{new } c: \text{channel}; \ (\text{out}(c, s) \mid \text{in}(c, x : t); \ \text{out}(d, c))
\]

preserves the secrecy of \( s \) because the adversary gets the channel \( c \) too late to be able to obtain \( s \). However, ProVerif cannot prove this property because the translation treats it like the following variant

\[
\text{new } c: \text{channel}; \ ((\ !\text{out}(c, s)) \mid \text{in}(c, x : t); \ \text{out}(d, c))
\]

with an additional replication, which does not preserve the secrecy of \( s \).

**Observational equivalence.** In addition to the previous approximations, ProVerif makes further approximations in order to prove observational equivalence. In order to show that \( P \) and \( Q \) are observationally equivalent, it proves that, at each step, \( P \) and \( Q \) reduce in the same way: the same branch of a test or destructor application is taken, communications happen in both processes or in neither of them. This property is sufficient for proving observational equivalence, but it is not necessary. For instance, in a test

\[
\text{if } M = N \text{ then } R_1 \text{ else } R_2
\]

if the **then** branch is taken in \( P \) and the **else** branch is taken in \( Q \), then ProVerif cannot prove observational equivalence. However, \( P \) and \( Q \) may still be observationally equivalent if the adversary cannot distinguish what \( R_1 \) does from what \( R_2 \) does.

Along similar lines, the biprocess

\[
P = \text{out}(c, \text{choice}[m, n]) \mid \text{out}(c, \text{choice}[n, m])
\]

satisfies observational equivalence but ProVerif cannot show this: the first component of the parallel composition outputs either \( m \) or \( n \), and the adversary has these two names, so ProVerif cannot prove observational equivalence because it thinks that the adversary can distinguish these two situations. In fact, the difference in the first output is compensated by the second output, so that observational equivalence holds. In this simple example, it is easy to prove observational equivalence by rewriting the process into the structurally equivalent process \( \text{out}(c, \text{choice}[m, m]) \mid \text{out}(c, \text{choice}[n, n]) \) for which ProVerif can obviously prove observational equivalence. It becomes more difficult when a configuration similar to the one above happens in the middle of the execution of the process. Ben Smyth et al. are working on an extension of ProVerif to tackle such cases [DRS08].

**Limitations of attack reconstruction.** Some limitations also come from attack reconstruction. There is no attack reconstruction against nested correspondences. (ProVerif reconstructs attacks only when the basic correspondence at the root of the nested correspondence fails.) The reconstruction of attacks against injective correspondences is based on heuristics that sometimes fail. For observational equivalences, ProVerif can reconstruct a trace that reaches the first point at which the two processes start reducing differently. However, such a trace does not guarantee that observational equivalence is wrong; for this reason, ProVerif never says that an observational equivalence is false.
6.4 Compatibility with CryptoVerif

A long-term goal is to be able to use the same input files to be able to verify protocols both in ProVerif and in CryptoVerif (a computationally-sound protocol verifier that can be downloaded from http://cryptoverif.inria.fr). ProVerif proves protocols in the formal model and can reconstruct attacks, while CryptoVerif proves protocols in the computational model. CryptoVerif proofs are more satisfactory, because they rely on a less abstract model, but CryptoVerif is more difficult to use and less widely applicable than ProVerif, and it cannot reconstruct attacks, so these two tools are complementary.

It is not yet possible to use the same input files for both tools, but the typed front-end of ProVerif is a first step towards this goal. It already provides some features designed for CryptoVerif compatibility.

In particular, it allows to use macros for defining the security assumptions on primitives. One can define a macro name($i_1, \ldots, i_n$) by

\begin{verbatim}
def name($i_1, \ldots, i_n$) {
    declarations
}
\end{verbatim}

Then expand name($a_1, \ldots, a_n$). expands to the declarations inside def with $a_1, \ldots, a_n$ substituted for $i_1, \ldots, i_n$. As an example, we can define block ciphers by

\begin{verbatim}
def SPRP_cipher(keyseed, key, blocksize, kgen, enc, dec, Penc) {
    fun enc(blocksize, key): blocksize.
    fun kgen(keyseed):key.
    fun dec(blocksize, key): blocksize.

equation forall m: blocksize, r: keyseed:
    dec(enc(m, kgen(r)), kgen(r)) = m.
equation forall m: blocksize, r: keyseed:
    enc(dec(m, kgen(r)), kgen(r)) = m.
}
\end{verbatim}

SPRP stands for Super Pseudo-Random Permutation, a standard computational assumption on block ciphers; here, the ProVerif model tries to be close to this assumption, even if it is probably stronger. Penc is the probability of breaking this assumption; it makes sense only for CryptoVerif, but the goal to use the same macros with different definitions in ProVerif and in CryptoVerif.

We can then declare a block cipher by

\begin{verbatim}
expand SPRP_cipher(keyseed, key, blocksize, kgen, enc, dec, Penc).
\end{verbatim}

without repeating the whole definition.

The definitions of macros are typically stored in a library. Such a library can be specified by the command-line option -lib. The file cryptoverif.pvl (at the root of the ProVerif distribution) is an example of such a library. It can be included by calling

\begin{verbatim}
proverif -lib cryptoverif MyFile.pv
\end{verbatim}

ProVerif also supports but ignores the CryptoVerif declarations param, proba, and proof. It supports options after a type declaration, as in type $t$ [option]. These options are ignored. It supports channel $c_1, \ldots, c_n$, as a synonym of free $c_1, \ldots, c_n$: channel. (Only the former is supported by CryptoVerif.) It supports yield as a synonym of 0. It allows ! $i <= n$ instead of just !. (CryptoVerif uses the former.) An example of a protocol written with CryptoVerif compatibility in mind can be found in subdirectory examples/cryptoverif/.
Chapter 7

Outlook

The ProVerif software tool is the result of more than a decade of theoretical research. This manual explained how to use ProVerif in practice. More information on the theory behind ProVerif can be found in research papers:

- For the verification of secrecy as reachability, we recommend [Bla10, AB05a].
- For the verification of correspondences, we recommend [Bla09].
- For the verification of strong secrecy, see [Bla04]; for observational equivalence, guessing attacks, and the treatment of equations, see [BAF08].
- For the reconstruction of attacks, see [AB05c].
- For the termination result on tagged protocols, see [BP05].
- Case studies can be found in [AB05b, ABF07, BC08].

ProVerif is a powerful tool for verifying protocols in formal model. It works for an unbounded number of sessions and an unbounded message space. It supports many cryptographic primitives defined by rewrite rules or equations. It can prove various security properties: reachability, correspondences, and observational equivalences. These properties are particularly interesting to the security domain because they allow analysis of secrecy, authentication, and privacy properties. It can also reconstruct attacks when the desired properties do not hold.

However, ProVerif performs abstractions, so there are situations in which the property holds and cannot be proved by ProVerif. Moreover, proofs of security properties in ProVerif abstract away from details of the cryptography, and therefore may not in general be sound with respect to the computational model of cryptography. The CryptoVerif tool (http://cryptoverif.inria.fr), an automatic prover for security properties in the computational security model, aims to address this problem.
Appendix A

Language reference

In this appendix, we provide a reference for the typed pi calculus input language of ProVerif. We adopt the following conventions. \( X^* \) means any number of repetitions of \( X \); and \([X]\) means \( X \) or nothing. \( \text{seq}(X) \) is a sequence of \( X \), that is, \( \text{seq}(X) = [(\langle X \rangle, X^*)] = \langle X \rangle, \ldots, (X) \). (The sequence can be empty, it can be one element, or it can be several elements separated by commas.) \( \text{seq}^+(X) \) is a non-empty sequence of \( X \): \( \text{seq}^+(X) = ((\langle X \rangle)^+X) = \langle X \rangle, \ldots, (X) \). (It can be one or several elements of \( \langle X \rangle \) separated by commas.) Text in typewriter style should appear as it is in the input file. Text between \( \langle \) and \( \rangle \) represents non-terminals of the grammar. In particular, we will use:

- \( \langle \text{ident} \rangle \) to denote identifiers (Section 3.1.4) which range over an unlimited sequence of letters (a-z, A-Z), digits (0-9), underscores (_), single-quotes ('), and accented letters from the ISO Latin 1 character set where the first character of the identifier is a letter and the identifier is distinct from the reserved words of the language.

- \( \langle \text{int} \rangle \) to range over integers.

- \( \langle \text{typeid} \rangle \) to denote types (Section 3.1.1), which can be identifiers \( \langle \text{ident} \rangle \) or the reserved word \text{channel}.

- \( \langle \text{options} \rangle ::= [\langle \text{options} \rangle] \), where the allowed identifiers in the sequence are \text{data}, \text{private}, and \text{typeConverter} for the \text{fun} and \text{const} declarations, \text{private} for the \text{reduc} and \text{free} declarations, \text{memberOptim} and \text{block} for the \text{pred} declaration.

The input file consists of a list of declarations, followed by the keyword \text{process} and a process:

\[
\langle \text{declaration} \rangle^* \text{process} \langle \text{process} \rangle
\]

or a list of declarations followed by an equivalence query between two processes (see end of Section 4.3.2):

\[
\langle \text{declaration} \rangle^* \text{equivalence} \langle \text{process} \rangle \langle \text{process} \rangle
\]

Libraries (loaded with the command-line option \text{-lib}) are lists of declarations \( \langle \text{declaration} \rangle^* \).

We start by presenting the grammar for terms in Figure A.1. The grammar for declarations is considered in Figure A.2. Finally, Figure A.6 covers the grammar for processes.
Figure A.1 Grammar for terms (see Sections 3.1.4 and 4.1.3)

\[
\text{(term)} ::= \langle \text{ident} \rangle \\
| \text{(seq(term))} \\
| \langle \text{ident} \rangle \langle \text{seq(term)} \rangle \\
| \langle \text{term} \rangle = \langle \text{term} \rangle \\
| \langle \text{term} \rangle <> \langle \text{term} \rangle \\
| \langle \text{term} \rangle \&\& \langle \text{term} \rangle \\
| \langle \text{term} \rangle \| \langle \text{term} \rangle \\
| \text{not} (\langle \text{term} \rangle)
\]

\[
\text{(pterm)} ::= \langle \text{ident} \rangle \\
| \text{(seq(pterm))} \\
| \langle \text{ident} \rangle \langle \text{seq(pterm)} \rangle \\
| \text{choice}[[\text{pterm}],[\text{pterm}]] \quad \text{(see Section 4.3.2)} \\
| \langle \text{pterm} \rangle = \langle \text{pterm} \rangle \\
| \langle \text{pterm} \rangle <> \langle \text{pterm} \rangle \\
| \langle \text{pterm} \rangle \&\& \langle \text{pterm} \rangle \\
| \langle \text{pterm} \rangle \| \langle \text{pterm} \rangle \\
| \text{not} (\langle \text{pterm} \rangle)
\]

\[
\text{new} \langle \text{ident} \rangle : (\text{typeid}) ; \langle \text{pterm} \rangle \\
| \text{if} (\text{pterm}) \text{ then } (\text{pterm}) \text{ else } (\text{pterm}) \\
| \text{let} \langle \text{pattern} \rangle = (\text{pterm}) \text{ in } (\text{pterm}) \text{ else } (\text{pterm}) \\
| \text{let} \langle \text{typedecl} \rangle \text{ suchthat } (\text{pterm}) \text{ in } (\text{pterm}) \text{ else } (\text{pterm}) \quad \text{(see Section 6.1.1)}
\]

\[
\text{(pattern)} ::= \langle \text{ident} \rangle \\
| \langle \text{ident} \rangle : (\text{typeid}) \\
| \text{(seq(pattern))} \\
| \langle \text{ident} \rangle \langle \text{seq(pattern)} \rangle \\
| = \langle \text{pterm} \rangle
\]

\[
\text{(mayfailterm)} ::= \langle \text{term} \rangle \\
| \text{fail}
\]

\[
\text{(typedecl)} ::= \langle \text{ident} \rangle : (\text{typeid}), (\text{typedecl}) \\
\text{(failtypedecl)} ::= \langle \text{ident} \rangle : (\text{typeid}) | \text{fail} | (\text{failtypedecl})
\]

The precedences of infix symbols, from low to high, are: ||, &\&, =, <>. The grammar of terms \(\langle\text{term}\rangle\) is further restricted after parsing. In \text{reduc} and \text{equation} declarations, the only allowed function symbols are constructors, so ||, &\&, =, <>, \text{not} are not allowed, and names are not allowed as identifiers. In \text{noninterf} declarations, the only allowed function symbols are constructors and names are allowed as identifiers. In \text{elimtrue} declarations, the term can only be a fact of the form \(p(M_1, \ldots, M_k)\) for some predicate \(p\); names are not allowed as identifiers. In clauses (Figure A.5), the hypothesis of clauses can be conjunctions of facts of the form \(p(M_1, \ldots, M_k)\) for some predicate \(p\), equalities, or inequalities; the conclusion of clauses can only be a fact of the form \(p(M_1, \ldots, M_k)\) for some predicate \(p\); names are not allowed as identifiers.
Figure A.2 Grammar for declarations

\[
\langle\text{declaration}\rangle ::= \text{type} \langle\text{ident}\rangle \langle\text{options}\rangle. \quad (\text{see Section 3.1.1})
\]

\[
\mid \text{channel} \ \langle\text{seq}^+\langle\text{ident}\rangle\rangle. \quad (\text{see Section 6.4})
\]

\[
\mid \text{free} \ \langle\text{seq}^+\langle\text{ident}\rangle\rangle: \langle\text{ typeid}\rangle \langle\text{options}\rangle. \quad (\text{see Section 3.1.1})
\]

\[
\mid \text{const} \ \langle\text{seq}^+\langle\text{ident}\rangle\rangle: \langle\text{ typeid}\rangle \langle\text{options}\rangle. \quad (\text{see Section 4.1.1})
\]

\[
\mid \text{fun} \ \langle\text{ident}\rangle\langle\text{seq}(\text{typeid})\rangle: \langle\text{ typeid}\rangle \langle\text{options}\rangle. \quad (\text{see Section 3.1.1})
\]

\[
\mid \text{letfun} \ \langle\text{ident}\rangle\langle\text{[(typeidcl)]}\rangle = \langle\text{pterm}\rangle. \quad (\text{see Section 4.2.3})
\]

\[
\mid \text{reduc} \ \langle\text{reduc}\rangle \langle\text{options}\rangle. \quad (\text{see Section 3.1.1})
\]

\[
\quad \text{where} \ \langle\text{reduc}\rangle ::= \langle\text{forall} \ \langle\text{typeidcl}\rangle\rangle \langle\text{term}\rangle = \langle\text{term}\rangle \mid \langle\text{forall}\rangle
\]

\[
\mid \text{fun} \ \langle\text{ident}\rangle\langle\text{seq}(\text{typeid})\rangle: \langle\text{ typeid}\rangle \text{ reduc} \langle\text{reduc'}\rangle \langle\text{options}\rangle. \quad (\text{see Section 4.2.1})
\]

\[
\quad \text{where} \ \langle\text{reduc'}\rangle ::= \langle\text{forall} \ \langle\text{failtypdecl}\rangle\rangle \langle\text{ident}\rangle\langle\text{seq}(\text{mayfailterm})\rangle = \langle\text{mayfailterm}\rangle
\]

\[
\quad \quad \quad \quad \quad \quad \quad \quad \text{[otherwise } \langle\text{reduc'}\rangle] \]

\[
\mid \text{equation} \ \langle\text{eqlist}\rangle \langle\text{options}\rangle. \quad (\text{see Section 4.2.2})
\]

\[
\quad \text{where} \ \langle\text{eqlist}\rangle ::= \langle\text{forall} \ \langle\text{typeidcl}\rangle\rangle \langle\text{term}\rangle = \langle\text{term}\rangle \mid \langle\text{forall}\rangle
\]

\[
\mid \text{pred} \ \langle\text{ident}\rangle\langle\text{[(typeid)]}\rangle \langle\text{options}\rangle. \quad (\text{see Section 6.1.1})
\]

\[
\mid \text{table} \ \langle\text{ident}\rangle\langle\text{seq}(\text{typeid})\rangle. \quad (\text{see Section 4.1.4})
\]

\[
\mid \text{let} \ \langle\text{ident}\rangle\langle\text{[(typeidcl)]}\rangle = \langle\text{process}\rangle. \quad (\text{see Section 3.1.3})
\]

\[
\quad \text{where} \ \langle\text{process}\rangle \text{ is specified in Figure A.6.}
\]

\[
\mid \text{set} \ \langle\text{name}\rangle = \langle\text{value}\rangle. \quad (\text{see Section 6.2.2})
\]

\[
\quad \text{where the possible values of } \langle\text{name}\rangle \text{ and } \langle\text{value}\rangle \text{ are listed in Section 6.2.2.}
\]

\[
\mid \text{event} \ \langle\text{ident}\rangle\langle\text{[(typeid)]}\rangle. \quad (\text{see Section 3.2.2})
\]

\[
\mid \text{query} \ \langle\text{[(typeidcl)]}\rangle \langle\text{query}\rangle. \quad (\text{see Sections } 3.2 \text{ and } 4.3.1)
\]

\[
\quad \text{where} \ \langle\text{query}\rangle \text{ is defined in Figure A.3.}
\]

\[
\mid \text{noninterf} \ \langle\text{[(typeidcl)]}\rangle \langle\text{seq}(\text{nidecl})\rangle. \quad (\text{see Section 4.3.2})
\]

\[
\quad \text{where} \ \langle\text{nidecl}\rangle ::= \langle\text{ident}\rangle \text{ among } \langle\text{seq}^+\langle\text{term}\rangle\rangle
\]

\[
\mid \text{weaksecret} \ \langle\text{ident}\rangle. \quad (\text{see Section 4.3.2})
\]

\[
\mid \text{not} \ \langle\text{[(typeidcl)]}\rangle \langle\text{gterm}\rangle. \quad (\text{see Section 6.3.1})
\]

\[
\quad \text{where} \ \langle\text{gterm}\rangle \text{ is defined in Figure A.3.}
\]

\[
\mid \text{nounif} \ \langle\text{[(typeidcl)]}\rangle \langle\text{nouinifdecl}\rangle. \quad (\text{see Section 6.3.1})
\]

\[
\quad \text{where} \ \langle\text{nouinifdecl}\rangle \text{ is defined in Figure A.4.}
\]

\[
\mid \text{elimtrue} \ \langle\text{failtypdecl}\rangle \langle\text{term}\rangle. \quad (\text{see Section 6.1.1})
\]

\[
\mid \text{clauses} \ \langle\text{clauses}\rangle. \quad (\text{see Section 6.1.1})
\]

\[
\quad \text{where} \ \langle\text{clauses}\rangle \text{ is defined in Figure A.5.}
\]

\[
\mid \text{param} \ \langle\text{seq}^+\langle\text{ident}\rangle\rangle \langle\text{options}\rangle. \quad (\text{see Section 6.4})
\]

\[
\mid \text{proba} \ \langle\text{ident}\rangle. \quad (\text{see Section 6.4})
\]

\[
\mid \text{proof} \ \{\langle\text{proof}\rangle\}. \quad (\text{see Section 6.4})
\]

\[
\mid \text{def} \ \langle\text{ident}\rangle\langle\text{seq}(\text{typeid})\rangle \{\langle\text{declaration}\rangle^*\} \quad (\text{see Section 6.4})
\]

\[
\mid \text{expand} \ \langle\text{ident}\rangle\langle\text{seq}(\text{typeid})\rangle. \quad (\text{see Section 6.4})
\]
Figure A.3 Grammar for \textbf{not} (see Section 6.3.1) and queries (see Sections 3.2 and 4.3.1)

\[
\begin{align*}
\langle \text{query} \rangle & := \langle \text{gterm} \rangle ; \langle \text{query} \rangle \\
& \mid \text{putbegin event:seq}^+ \langle \text{id} \rangle ; \langle \text{query} \rangle \\
& \mid \text{putbegin inj-event:seq}^+ \langle \text{id} \rangle ; \langle \text{query} \rangle \\
\langle \text{gterm} \rangle & := (\langle \text{id} \rangle) (\langle \text{seq} \langle \text{gterm} \rangle \rangle) \text{ [phase} \langle \text{int} \rangle \text{]} \\
& \mid (\langle \text{gterm} \rangle) = (\langle \text{gterm} \rangle) \\
& \mid (\langle \text{gterm} \rangle) \ll (\langle \text{gterm} \rangle) \\
& \mid (\langle \text{gterm} \rangle) \&\& (\langle \text{gterm} \rangle) \\
& \mid \text{event(}\langle \text{seq} \langle \text{gterm} \rangle \rangle\text{)} \\
& \mid \text{inj-event(}\langle \text{seq} \langle \text{gterm} \rangle \rangle\text{)} \\
& \mid (\langle \text{gterm} \rangle) \implies (\langle \text{gterm} \rangle) \\
& \mid (\langle \text{seq} \langle \text{gterm} \rangle \rangle) \\
& \mid \text{new} (\langle \text{id} \rangle)[[(\langle \text{gbinding} \rangle)]] \\
& \mid \text{let} (\langle \text{id} \rangle) = \langle \text{gterm} \rangle \text{ in } \langle \text{gterm} \rangle
\end{align*}
\]

The precedences of infix symbols, from low to high, are: $\implies$, $\|$, $\&\&$, $=$, $<>$. The grammar above is useful to know exactly how terms are parsed and where parentheses are needed. However, it is further restricted after parsing, so that the grammar of $\langle \text{gterm} \rangle$ in queries is in fact the one of $q$ below and the grammar of $\langle \text{gterm} \rangle$ in \textbf{not} declarations is the one of $F$ excluding events, equalities, and inequalities:

\[
\begin{align*}
q & := \\
F & \quad \text{query} \\
F & \implies H \quad \text{fact} \\
\text{let } x = M \text{ in } q \quad \text{correspondence} \\
H & := \\
F & \quad \text{hypothesis} \\
H & \&\& H \quad \text{fact} \\
H & || H \quad \text{conjunction} \\
F & \implies H \quad \text{disjunction} \\
\text{let } x = M \text{ in } H \quad \text{nested correspondence} \\
F & := \\
\text{attacker}(M) & \quad \text{the adversary has } M \text{ (in any phase)} \\
\text{attacker}(M) \text{ phase } n & \quad \text{the adversary has } M \text{ in phase } n \\
\text{mess}(N,M) & \quad M \text{ is sent on channel } N \text{ (in the last phase)} \\
\text{mess}(N,M) \text{ phase } n & \quad M \text{ is sent on channel } N \text{ in phase } n \\
\text{event}(e(M_1, \ldots, M_n)) & \quad \text{non-injective event} \\
\text{inj-event}(e(M_1, \ldots, M_n)) & \quad \text{injective event} \\
M & = N \quad \text{equality} \\
M & <> N \quad \text{inequality} \\
p(M_1, \ldots, M_n) & \quad \text{user-defined predicate, see Section 6.1.1} \\
\text{let } x = M \text{ in } F \quad \text{let binding, see Section 6.1.2} \\
M, N & := \\
x, a, c & \quad \text{variable, free name, or constant} \\
f(M_1, \ldots, M_n) & \quad \text{constructor application} \\
(M_1, \ldots, M_n) & \quad \text{tuple} \\
\text{new } a[g_1 = M_1, \ldots, g_k = M_k] & \quad \text{bound name } (g := !n | x), \text{ see Section 6.1.2} \\
\text{let } x = M \text{ in } N & \quad \text{let binding, see Section 6.1.2}
\end{align*}
\]
Figure A.4 Grammar for nounif (see Section 6.3.1)

\[
\langle \text{nounifdecl} \rangle ::= \text{let} \langle \text{ident} \rangle = \langle \text{gformat} \rangle \text{ in } \langle \text{nounifdecl} \rangle
\]

\[
\quad | \langle \text{ident} \rangle [(\langle \text{seq} \langle \text{gformat} \rangle \rangle \text{[phase } \langle \text{int} \rangle \text{]} [\text{/} \langle \text{int} \rangle]]
\]

\[
\langle \text{gformat} \rangle ::= \langle \text{ident} \rangle
\]

\[
\quad | \ast (\langle \text{ident} \rangle)
\]

\[
\quad | (\langle \text{ident} \rangle) (\langle \text{seq} \langle \text{gformat} \rangle \rangle)
\]

\[
\quad | \text{not} (\langle \text{seq} \langle \text{gformat} \rangle \rangle)
\]

\[
\quad | (\langle \text{seq} \langle \text{gformat} \rangle \rangle)
\]

\[
\quad | \text{new} (\langle \text{ident} \rangle)[(\langle \text{fbinding} \rangle)]
\]

\[
\quad | \text{let} (\langle \text{ident} \rangle) = \langle \text{gformat} \rangle \text{ in } \langle \text{gformat} \rangle
\]

\[
\langle \text{fbinding} \rangle ::= ! (\langle \text{int} \rangle) = (\langle \text{gformat} \rangle) [; \langle \text{fbinding} \rangle]
\]

\[
\quad | \langle \text{ident} \rangle = (\langle \text{gformat} \rangle) [; \langle \text{fbinding} \rangle]
\]

Figure A.5 Grammar for clauses (see Section 6.1.1)

\[
\langle \text{clauses} \rangle ::= [\text{forall} \langle \text{failtypedecl} \rangle;] \langle \text{clause} \rangle [; \langle \text{clauses} \rangle]
\]

\[
\langle \text{clause} \rangle ::= \langle \text{term} \rangle
\]

\[
\quad | \langle \text{term} \rangle -> \langle \text{term} \rangle
\]

\[
\quad | \langle \text{term} \rangle <-> \langle \text{term} \rangle
\]

\[
\quad | \langle \text{term} \rangle <=> \langle \text{term} \rangle
\]
Figure A.6 Grammar for processes (see Section 3.1.4)

\[
\text{(process)} ::= 0 \\
\quad \mid \text{yield} \quad \text{(see Section 6.4)} \\
\quad \mid \langle \text{ident} \rangle \langle \text{seq}(\text{pterm}) \rangle \\
\quad \mid \langle \text{process} \rangle \\
\quad \mid \langle \text{process} \rangle | \langle \text{process} \rangle \\
\quad \mid ! \langle \text{process} \rangle \\
\quad \mid ! \langle \text{ident} \rangle <= \langle \text{ident} \rangle \langle \text{process} \rangle \quad \text{(see Section 6.4)} \\
\quad \mid \text{new} \langle \text{ident} \rangle \langle \text{seq}(\text{ident}) \rangle : (\text{typeid}) ; \langle \text{process} \rangle \\
\quad \mid \text{if} \langle \text{pterm} \rangle \text{ then } \langle \text{process} \rangle \text{ else } \langle \text{process} \rangle \\
\quad \mid \text{in}(\langle \text{pterm} \rangle, \langle \text{pattern} \rangle) ; \langle \text{process} \rangle \\
\quad \mid \text{out}(\langle \text{pterm} \rangle, \langle \text{pterm} \rangle) ; \langle \text{process} \rangle \\
\quad \mid \text{let} \langle \text{pattern} \rangle = \langle \text{pterm} \rangle \text{ in } \langle \text{process} \rangle \text{ else } \langle \text{process} \rangle \text{]} \\
\quad \mid \text{let} \text{ (typeparam)} \text{ suchthat} \langle \text{pterm} \rangle \text{ in } \langle \text{process} \rangle \text{ else } \langle \text{process} \rangle \text{]} \quad \text{(see Section 6.4)} \\
\quad \mid \text{insert} \langle \text{ident} \rangle \langle \text{seq}(\text{pterm}) \rangle ; \langle \text{process} \rangle \quad \text{(see Section 4.1.4)} \\
\quad \mid \text{get} \langle \text{ident} \rangle \langle \text{seq}(\text{pattern}) \rangle \text{ suchthat} \langle \text{pterm} \rangle \text{ in } \langle \text{process} \rangle \text{ else } \langle \text{process} \rangle \text{]} \quad \text{(see Section 4.1.4)} \\
\quad \mid \text{event} \langle \text{ident} \rangle \langle \text{seq}(\text{pterm}) \rangle \text{ ] ; } \langle \text{process} \rangle \quad \text{(see Section 3.2.2)} \\
\quad \mid \text{phase} \langle \text{int} \rangle ; \langle \text{process} \rangle \quad \text{(see Section 4.1.5)}
\]
Bibliography


